Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Modulus of dentability in $L¹ + L^{∞}$
100%
EN
We introduce the notion of the modulus of dentability defined for any point of the unit sphere S(X) of a Banach space X. We calculate effectively this modulus for denting points of the unit ball of the classical interpolation space $L¹ + L^{∞}.$ Moreover, a criterion for denting points of the unit ball in this space is given. We also show that none of denting points of the unit ball of $L¹ + L^{∞}$ is a LUR-point. Consequently, the set of LUR-points of the unit ball of $L¹ + L^{∞}$ is empty.
EN
There are necessary conditions for a point x from the unit sphere to be a denting point of the unit ball of Orlicz spaces equipped with the Orlicz norm generated by arbitrary Orlicz functions. In contrast to results in [12, 17, 16], we present also examples of Orlicz spaces in which strongly extreme points of the unit ball are not denting points.
3
Content available Uniform \(\lambda\)-property in \(L^1\cap L^\infty\)
100%
EN
Here it is proved that the space \(L^{1}\cap L^{\infty }\) equipped with the standard interpolation norm \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}=\max \left\{ \left\Vert \cdot \right\Vert _{L^{1}},\left\Vert \cdot \right\Vert _{L^{\infty }}\right\} \) has the uniform \(\lambda \)-property if and only if \(\mu (T)\leq 1.\) Replacing the standard norm with an equivalent one \(\left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime }= \) \(\left\Vert \cdot \right\Vert _{L^{1}}+\left\Vert \cdot \right\Vert _{L^{\infty }}\), a different result is obtained.: \((L^{1}\cap L^{\infty }, \left\Vert \cdot \right\Vert _{L^{1}\cap L^{\infty }}^{\prime } )\) has the uniform \(\lambda \)-property if and only if \(\mu (T)
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.