Wireless sensor network is a dynamic field of networking and communication because of its increasing demand in critical Industrial and Robotics applications. Clustering is the technique mainly used in the WSN to deal with large load density for efficient energy conservation. Formation of number of duplicate clusters in the clustering algorithm decreases the throughput and network lifetime of WSN. To deal with this problem, advance distributive energy-efficient adaptive clustering protocol with sleep/wake scheduling algorithm (DEACP-S/W) for the selection of optimal cluster head is presented in this paper. The presented sleep/wake cluster head scheduling along with distributive adaptive clustering protocol helps in reducing the transmission delay by properly balancing of load among nodes. The performance of algorithm is evaluated on the basis of network lifetime, throughput, average residual energy, packet delivered to the base station (BS) and CH of nodes. The results are compared with standard LEACH and DEACP protocols and it is observed that the proposed protocol performs better than existing algorithms. Throughput is improved by 8.1% over LEACH and by 2.7% over DEACP. Average residual energy is increased by 6.4% over LEACH and by 4% over DEACP. Also, the network is operable for nearly 33% more rounds compared to these reference algorithms which ultimately results in increasing lifetime of the Wireless Sensor Network.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.