The paper presents application of differential electronic nose in the dynamic (on-line) volatile measurement. First we compare the classical nose employing only one sensor array and its extension in the differential form containing two sensor arrays working in differential mode. We show that differential nose performs better at changing environmental conditions, especially the temperature, and well performs in the dynamic mode of operation. We show its application in recognition of different brands of tobacco.
The paper develops the modified structure of the Takagi-Sugeno-Kang neuro-fuzzy network with a theoretical basis for its adaptation. The simplified structure follows from the basic theoretical considerations concerning the way of creating the inference rules. The important point of this solution is the application of the fuzzy clustering algorithm to the input data. The efficiency of the proposed solution has been checked on the examples of regression and classification problems concerning the electronic nose.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.