Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose. The aim of the study was to assess the in vitro potency of pentoxifylline (PTX) and one of its most active metabolites lisofylline (LSF) to improve rheological properties of red blood cells (RBC) from healthy individuals and patients with chronic venous disease (CVD). Additionally, the study aimed to compare the effects of PTX and LSF on RBC deformability and aggregation. Methods. Blood samples were collected from healthy volunteers (antecubital vein) and from CVD patients (varicose and antecubital vein). Deformability and aggregation of RBC were assessed using Laser-assisted Optical Rotational Cell Analyser (LORCA). Results. PTX and LSF increased RBC elongation significantly. Additionally, RBC incubation with PTX resulted in a marked decrease in RBC aggregation. PTX reduced the tendency towards the formation of RBC aggregates and of their stability. The beneficial effect of PTX on RBC aggregation was most apparent for those cells whose aggregation tendency and aggregate stability was the greatest. Conclusions. In vitro addition of PTX or LSF effectively increased deformability of RBC from healthy donors and patients with CVD. Thus, LSF may contribute to the in vivo hemorheological effects of pentoxifylline. On the other hand, there was no significant effect of LSF on aggregation of RBC in vitro. Hence, LSF has no contribution to this particular effect of PTX. Additionally, the present study demonstrated the use of RBC with impaired deformability and aggregation for the evaluation of in vitro rheological activity of xenobiotics.
EN
Purpose. Besides being widely used in cosmetics, retinoids are potent therapeutic agents used topically and systemically as anti-acne agents. The aim of this study was to predict with the use of MetaSite the skin metabolism of selected retinoids employed in treatment of skin disorders and found in cosmeceuticals. The following compounds were studied: retinol, retinaldehyde, retinoic acid, retinyl acetate, retinyl palmitate, acitretin, etretinate, adapalene and bexarotene. Methods. MetaSite, Molecular Discovery Ltd. is a computational model that enables prediction of cytochrome P450-dependant metabolism. This software indicates atoms in the molecule structure that are mostly vulnerable to metabolic changes and predicts the metabolite structures. Results. MetaSite indicated that retinol and retinal metabolites were obtained through hydroxylation of the methyl group located in the position 3 of the aliphatic chain, whereas retinoic acid biotransformation would occur principally in the carbon atom situated in the position 4 in the cyclohexene ring. In acitretin molecule, carbon atom of the methoxy group attached to the benzene ring displayed the highest probability of biotransformation. In etretinate, metabolic reactions would occur principally on the carbon atom of the final ethyl group of the molecule. Conclusions. MetaSite metabolism predictions for retinoic acid, acitretin, etretinate, adapalene and bexarotene were in agreement with experimental findings. In case of compounds being converted by catalysts other than cytochrome P450 enzymes, the primary metabolites predicted by MetaSite differ from those reported previously. In conclusion, MetaSite is a useful tool that can aid identification of the major metabolites of compounds being administered topically.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.