Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A note on Picard iterates of nonexpansive mappings
100%
EN
Let X be a Banach space, C a closed subset of X, and T:C → C a nonexpansive mapping. It has recently been shown that if X is reflexive and locally uniformly convex and if the fixed point set F(T) of T has nonempty interior then the Picard iterates of the mapping T always converge to a point of F(T). In this paper it is shown that if T is assumed to be asymptotically regular, this condition can be weakened much further. Finally, some observations are made about the geometric conditions imposed.
2
Content available remote Proximal normal structure and relatively nonexpansive mappings
80%
EN
The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that there exists x₀ ∈ A ∪ B such that ∥ x₀-Tx₀∥ = dist(A,B). If in addition the norm of X is strictly convex, and if (i) is replaced with (i)' T(A) ⊆ A and T(B) ⊆ B, then the conclusion is that there exist x₀ ∈ A and y₀ ∈ B such that x₀ and y₀ are fixed points of T and ∥ x₀ -y₀∥ = dist(A,B). Because every bounded closed convex pair in a uniformly convex Banach space has proximal normal structure, these results hold in all uniformly convex spaces. A Krasnosel'skiĭ type iteration method for approximating the fixed points of relatively nonexpansive mappings is also given, and some related Hilbert space results are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.