Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We develop a three-part approach to Verb Sense Disambiguation (VSD) in German. After considering a set of lexical resources and corpora, we arrive at a statistically motivated selection of a subset of verbs and their senses from GermaNet. This sub-inventory is then used to disambiguate the occurrences of the corresponding verbs in a corpus resulting from the union of TüBa-D/Z, Salsa, and E-VALBU. The corpus annotated in this way is called TGVCorp. It is used in the third part of the paper for training a classifier for VSD and for its comparative evaluation with a state-of-the-art approach in this research area, namely EWISER. Our simple classifier outperforms the transformer-based approach on the same data in both accuracy and speed in German but not in English and we discuss possible reasons.
EN
The challenge of POS tagging and lemmatization in morphologically rich languages is examined by comparing German and Latin. We start by defining an NLP evaluation roadmap to model the combination of tools and resources guiding our experiments. We focus on what a practitioner can expect when using state-of-the-art solutions. These solutions are then compared with old(er) methods and implementations for coarse-grained POS tagging, as well as fine-grained (morphological) POS tagging (e.g. case, number, mood). We examine to what degree recent advances in tagger development have improved accuracy – and at what cost, in terms of training and processing time. We also conduct in-domain vs. out-of-domain evaluation. Out-of-domain evaluation is particularly pertinent because the distribution of data to be tagged will typically differ from the distribution of data used to train the tagger. Pipeline tagging is then compared with a tagging approach that acknowledges dependencies between inflectional categories. Finally, we evaluate three lemmatization techniques.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.