In this paper we study the representation of Boolean functions by general binary decision diagrams (BDDs). We investigate the size L(Σ) (number of inner nodes) of BDD Σ with different constraints on the number M(Σ) of its merged nodes. Furthermore, we introduce a weighted complexity measure W(Σ) = L(Σ) + ωM(Σ), where ω > 0. For the hardest Boolean function on n input variables we define the weight WBDD(n) and the size LBDD(n, t), where t limits the number of merged nodes. By using a new synthesis method and appropriate restrictions for the number t of merged nodes, we are able to prove tight upper and lower asymptotic bounds: [formula] which have a relative error of O(1/n). Our results show how weight and structural restrictions of general BDDs influence the complexity of the hardest function in terms of high accuracy asymptotic bounds.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.