Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We present density functional theory (DFT) calculation results concerning the uranium dioxide crystals with a helium atom incorporated in the octahedral interstitial position. "Ab initio" calculations were performed using the Wien2k program package. For comparison, a pseudo-potential approach in the generalized gradient approximation was applied using the ABINIT program package. To compute the unit cell parameters 13 atom super-cell was chosen. Parameters of the potential barrier, which the helium atom has to overcome while jumping to the next octahedral interstitial position, were calculated by the help of both the program packages. The results, obtained using two different program packages, are shown in the table and presented graphically. For the so described parameters, the quantum mechanical movement of the helium atom around the equilibrium position is considered. The parameters of Schrödinger's equation are collected in Table 2, while the results of mean square deviation and thermal occupation of energetic levels are presented in a graph. It is established that the helium atoms are located (with an accuracy of several percent of lattice constant) nearby the equilibrium position and form a local bound state. Applying a two site-model, we evaluated the time for an over-barrier jump. Graphically presented results show that the helium atom over-barrier jump is not possible even for temperatures as high as 1200 K. Influence of potential barrier height on the jump time was also considered.
EN
We present quantum-mechanical evaluation of helium diffusion coefficient in the crystalline UO2 and ThO2. Parameters assignment of Schrödinger’s equation were done using the crystal field potentials which were obtained applying the density functional theory (DFT). “Ab initio” calculations were performed using the Wien2k program package. To compute the unit cell parameters the 13 atom super-cell was chosen. Applying two-site model we evaluated the time for an over-barrier jump and diffusion of interstitial He. The obtained values for diffusion coefficient are compared with the experimentally obtained values and with the theoretical values of other authors. In addition, it is simultaneously shown that helium diffusion in these materials is a quantum diffusion.
EN
We present density functional theory (DFT) calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA) was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.
EN
Density functional theory (DFT) results of calculations of the mixed thorium and uranium dioxide Th1-xUxO2 for the following mole ratio x = 0, 0.25, 0.75 and 1 are presented and discussed. "Ab initio" calculations were performed using the Wien2k program package. To compute the unit cell parameters the 12 atom super-cell were chosen. The lattice parameters were calculated through minimization of the total energy by the change of lattice parameters and atom displacement within the unit cell. Calculations were performed for five different exchange energy approximations EXC with and without corrective orbital potential U, and obtained lattice constants are presented graphically and compared with experimental data. It is established that the initially assumed oxygen location within the unit cell plus or minus 0.25 of the mixed compounds are not their equilibrium positions. The oxygen atoms within the unit cell undergo dislocation in the (111) direction. So, the distances oxygen-uranium are smaller than the distances oxygen-thorium. The change of local structure is presented graphically and appropriate parameters values are given in Table. The bulk modulus and the cohesive properties are also counted and shown graphically.
EN
The valence electron density distribution of krypton and xenon located in the oxygen vacancy and in its nearest neighbourhood was performed by application of the method “ab initio”. The results are presented on the graphs. The bonding energies of krypton and xenon in the uranium dioxide crystal lattice were calculated. It was found also that krypton and xenon cause a local increase of UO1.75Xe0.25 and UO1.75Kr0.25 unit cell and cause its deformation what is presented in tables. The force constants of krypton and xenon were also assigned what gives evidence about the strong bond of krypton and xenon with the UO1.75Xe0.25 and UO1.75Kr0.25 single crystal lattice. Obtained results are compared with the analogical studies of He atom incorporation into UO2 single crystal lattice.
EN
The development of cancer is associated with high oxidative stress and at the same time with immune system activation. Tumors develop efficient mechanisms of protection against the immune response, which allow them to escape the immune surveillance. Simultaneously, key events in the process of carcinogenesis are related to oxidative stress. The relationship between the two remains unknown. Novel understanding of oxidative stress shows that discrete changes of activities of certain enzyme systems such as NADPH oxidases or nitric oxide synthases may be more important than the overall balance of production and removal of reactive oxygen species. Such imbalance of nitric oxide and superoxide production could modify inflammation and immune regulation. We studied superoxide anion production (by lucigenin enhanced chemiluminescence - 5 µM), NADPH oxidase activity and nitric oxide synthase (NOS) dysfunction. In parallel mRNA expression of immunomodulatory markers such as FoxP3 (T regulatory cell marker), CCR6 (mucosal homing effector T cell marker) and CD85j (NK cell/CD8 T cell Ig-like MHC class I inhibitory receptor) was determined. Basal superoxide production and NADPH oxidase activity are increased in oral squamous cell carcinoma. Tumor superoxide production was inhibited by NADPH oxidase inhibitor apocynin and by NOS inhibitor L-NAME. This indicates, for the first time, that oral squamous cell carcinoma is characterized by dysregulated nitric oxide synthase, which apart from increased NADPH oxidase activity contributes to oxidative stress and may be related to the immuno-pathology of these tumors. Studied tumors were infiltrated by CCR6+, but showed lower expression of both CD85j and FoxP3 mRNA. Finally, the CD85j mRNA expression was inversely correlated to oxidative stress parameters. These preliminary studies indicate that tumor oxidative stress, related to NADPH oxidase activity and NOS activity could be related to immune responses to cancer, thus therapeutic modification of oxidative stress, which could include the correction of NOS dysfunction, could facilitate immune surveillance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.