Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The contact patterns of bevel gear sets are an important indicator for the acoustic quality of rear axle drives. The contact patterns are the result of complex interactions in the production process. This is due to many process steps, numerous influencing factors and interdependencies. In general, their effect on product variations is not fully comprehended. This impedes the design and control of the production process based on a holistic analytical model for new variants fulfilling the acoustic requirements. The approach with self-optimization is possible but can take a long time for the training of the artificial neural networks and the necessary iterations until a satisfying precision for the predicted process parameters is achieved. Also it can occur that the algorithm is not converging and therefore no satisfactory result is turned out at all. In this paper an approach is presented combining the flexibility of self-optimizing systems with the higher precision of delimited solution finders called the Cognitive Failure Cluster (CFC). The improvements provided by the clustering of the optimization program are evaluated regarding the training time and the precision of the result for a production lot of bevel gear sets.
EN
The production of automotive rear-axle drives is a complex process. This is due to many involved process steps, factors and interdependencies between processes, materials, means of production and individuals acting in this environment. In general their effect on product variations is not fully comprehended. Hence, a holistic analytical model is only possible in parts of the production. In this paper a modular approach is presented to make the production more flexible and enable it to react faster on product variations. This is achieved by a Cognitive Production System (CPS), which is based on accumulating, storing and processing of process knowledge so that it can be applied to similar cases. Through the combination and interaction of Cognitive Tolerance Matching (CTM) and Agent-based Systems the performance of the CPS is enhanced. The work discusses the set-up of such a CPS for the production of automotive rear-axle-drives with the focus on the failure state agent.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.