Natural phenolic acids are commonly present in plants consumed in the diet. Recently we have observed that different natural phenolic acids exert differential effects on the body mass gain in ovariectomized and non-ovariectomized female rats. The aim of the present study was to investigate the effects of ferulic, caffeic, p-coumaric and chlorogenic acids on serum estradiol and total cholesterol levels in ovariectomized and non-ovariectomized rats. The experiments were carried out on 3-month old female Wistar Cmd:(WI)WU rats, divided into following groups (n=8 in each group): non-ovariectomized control rats and non-ovariectomized rats receiving ferulic, caffeic, p-coumaric or chlorogenic acids, sham-operated control rats, ovariectomized control rats and ovariectomized rats receiving the same phenolic acids. The phenolic acids were administered at a dose of 10 mg/kg p.o. daily for 4 weeks. Serum estradiol and total cholesterol levels on the next day after the last administration of the phenolic acids were examined. The phenolic acids did not affect serum estradiol or total cholesterol levels in non-ovariectomized rats. In ovariectomized rats, caffeic acid and to a lesser extent p-coumaric acid increased serum estradiol level, which effect correlated with a decreased body mass gain. All the phenolic acids decreased serum cholesterol level in ovariectomized rats. Concluding, the anti-obesity activity of some phenolic acids may be, at least partially, connected with estrogenic pathways.
A correlation between occurrence of osteoporosis and atherosclerosis with vascular calcifi cation has been found in recent years. The most signifi cant link between atherosclerosis and osteoporosis seem to be nuclear factor B and the receptor activator of nuclear factor B ligand (RANKL)/receptor activator of nuclear factor B (RANK)/osteoprotegerin (OPG) system – one of the fundamental mechanisms regulating metabolic processes in the skeletal system. Most experimental data indicate a negative eff ect of RANKL and protective eff ect of OPG in development of calcifi cation and destabilization of atherosclerotic plaque. However, a potential unfavourable role of excessive jest: of ar therosclerosis ma być: OPG in the pathomechanism of atherosclerosis also needs to be considered. The role of RANKL and OPG in pathogenesis of osteoporosis and atherosclerosis has been presented in the study.
PL
W ostatnich latach została wykazana korelacja między występowaniem osteoporozy i miażdżycy z wapnieniem naczyń. Jak się wydaje, najważniejszymi czynnikami łączącymi miażdżycę z osteoporozą są czynnik jądrowy B i układ: ligand receptora aktywującego czynnik jądrowy B (RANKL)/receptor aktywujący czynnik jądrowy B (RANK)/osteoprotegeryna (OPG), jeden z podstawowych mechanizmów regulujących procesy metaboliczne w układzie kostnym. Większość danych eksperymentalnych wskazuje na niekorzystne działanie RANKL i ochronne działanie OPG w rozwoju wapnienia i destabilizacji blaszki miażdżycowej, należy jednak brać pod uwagę także możliwość niekorzystnego udziału nadmiaru OPG w patomechanizmie miażdżycy. W pracy przedstawiono rolę RANKL i OPG w patogenezie osteoporozy i miażdżycy.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Glucocorticoids and β2-adrenergic receptor agonists are the most commonly used drugs in the treatment of asthma. Both therapies are potentially dangerous to the skeletal system. The aim of the present study was to investigate the effects of fenoterol, a β2-receptor agonist, on the development of bone changes induced by glucocorticoid (prednisolone) administration in mature male rats. The experiments were carried out on 24-week-old male Wistar rats. The effects of prednisolone 21-hemisuccinate sodium salt (7 mg/kg s.c. daily) or/and fenoterol hydrobromide (1.4 mg/kg i.p. daily), administered for 4 weeks, on the skeletal system were studied. Bone turnover markers, geometric parameters, mass, mass of bone mineral in the tibia, femur and L-4 vertebra, bone histomorphometric parameters and mechanical properties of tibial metaphysis, femoral diaphysis and femoral neck were determined. Both prednisolone and fenoterol had damaging effects on the skeletal system of mature male rats. However, concurrent administration of fenoterol and prednisolone did not result in the intensification of the deleterious skeletal effect of either drug administered separately.
Diosgenin is a steroidal sapogenin present in fenugreek and Dioscorea spp. as glycosides (saponins). Diosgenin has already been reported to inhibit osteoclastogenesis and to stimulate osteogenic activity of osteoblastic cells in vitro, and to exert some antiosteoporotic effects in rats in vivo. The aim of the present study was to investigate the effects of diosgenin administration on the skeletal system of rats with normal estrogen level and with estrogen deficiency induced by bilateral ovariectomy. The experiments were carried out on 3-month-old non-ovariectomized and ovariectomized Wistar rats, divided into control rats and rats receiving diosgenin (50 mg/kg p.o. daily) for 4 weeks. Serum bone turnover markers, bone mass and mineralization, histomorphometric parameters and mechanical properties were studied. Diosgenin improved some investigated parameters in both non-ovariectomized and ovariectomized rats, in which estrogen deficiency induced osteoporotic changes. Diosgenin increased compact bone formation and probably inhibited cancellous bone resorption, which led to improvement of mechanical properties of compact and cancellous bone. In conclusion, this in vivo study demonstrated that diosgenin may be one of sparse compounds increasing bone formation.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Genistein, a major phytoestrogen of soy, is considered a potential drug for prevention and treatment of postmenopausal osteoporosis. The aim of the present study was to compare the effects of genistein, estradiol and raloxifene on the skeletal system in vivo and in vitro. Genistein (5 mg/kg), estradiol (0.1 mg/kg) or raloxifene hydrochloride (5 mg/kg) were administered daily by a stomach tube to mature ovariectomized Wistar rats for 4 weeks. Bone mass, mineral and calcium content, macrometric parameters and mechanical properties were examined. Also the effects of genistein, estradiol and raloxifene (10-9-10-7 M) on the formation of osteoclasts from neonatal mouse bone marrow cells and the activity of osteoblasts isolated from neonatal mouse calvariae were compared. In vivo, estrogen deficiency resulted in the impairment of bone mineralization and bone mechanical properties. Raloxifene but not estradiol or genistein improved bone mineralization. Estradiol fully normalized the bone mechanical properties, whereas genistein augmented the deleterious effect of estrogen-deficiency on bone strength. In vitro, genistein, estradiol and raloxifene inhibited osteoclast formation from mouse bone marrow cells, decreasing the ratio of RANKL mRNA to osteoprotegerin mRNA expression in osteoblasts. Genistein, but not estradiol or raloxifene, decreased the ratio of alkaline phosphatase mRNA to ectonucleotide pyrophosphatase phosphodiesterase 1 mRNA expression in osteoblasts. This difference may explain the lack of genistein effect on bone mineralization observed in ovariectomized rats in the in vivo study. Concluding, our experiments demonstrated profound differences between the activities of genistein, estradiol and raloxifene towards the osseous tissue in experimental conditions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.