An observability problem for a class of linear, uncertain-parameter, time-invariant dynamic SISO systems is discussed. The class of systems under consideration is described by a finite dimensional state-space equation with an interval diagonal state matrix, known control and output matrices and a two-dimensional uncertain parameter space. For the system considered a simple geometric interpretation of the system spectrum can be given. The geometric interpretation of the system spectrum is the base for defining observability and non-observability areas for the discussed system. The duality principle allows us to test observablity using controllability criteria. For the uncertain-parameter system considered, some controllability criteria presented in the author's previous papers are used. The results are illustrated with numerical examples.
A new, state space, non-integer order model for the heat transfer process is presented. The proposed model is based on a Feller semigroup one, the derivative with respect to time is expressed by the non-integer order Caputo operator, and the derivative with respect to length is described by the non-integer order Riesz operator. Elementary properties of the state operator are proven and a formula for the step response of the system is also given. The proposed model is applied to the modeling of temperature distribution in a one dimensional plant. Results of experiments show that the proposed model is more accurate than the analogical integer order model in the sense of the MSE cost function.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.