New measurement technologies, e.g. Light Detection And Ranging (LiDAR), generate very large datasets. In many cases, it is reasonable to reduce the number of measuring points, but in such a way that the datasets after reduction satisfy specific optimization criteria. For this purpose the Optimum Dataset (OptD) method proposed in [1] and [2] can be applied. The OptD method with the use of several optimization criteria is called OptD-multi and it gives several acceptable solutions. The paper presents methods of selecting one best solution based on the assumptions of two selected numerical optimization methods: the weighted sum method and the ε-constraint method. The research was carried out on two measurement datasets from Airborne Laser Scanning (ALS) and Mobile Laser Scanning (MLS). The analysis have shown that it is possible to use numerical optimization methods (often used in construction) to obtain the LiDAR data. Both methods gave different results, they are determined by initially adopted assumptions and – in relation to early made findings, these results can be used instead of the original dataset for various studies.
The aim of this paper was to determine the differences in the designed and manufactured model of a suspension. A set of key parameters was compared, including camber and toe in angles and their change w.r.t wheel travel, as well as the motion ratio. It also focused on the possibility of accurately determining the suspension system kinematics using affordable measuring devices available on the market. First, the design process, main goals and project assumptions were briefly described. Next, the CAD model and manufacturing process was presented. Finally, the measurements of both computer and real model were performed. The obtained results were compared and a significant difference between models was observed. The reason of such variation could not be determined unambiguously, as there were numerous factors that could potentially influence the results. Moreover, it was proven that accurate determination of kinematics is impossible using the given set of measuring devices.
3D concrete printing (3DCP) technology is a rapidly developing and promising technique for creating concrete structures. One of the main challenges of the 3DCP technology is the method of reinforcement, which should be integrated with the automated printing process, while maintaining the best mechanical properties important for the strength of the structure. The main reason to undertake the subject is low degree of automation in construction industry, which results in high cost of human labour, as well as high rate of accidents in process. The article proposes a technology for automatic reinforcement of concrete structures with glass fibres and epoxy resin. Maximum bending force tests of beams reinforced with the proposed method were carried out and compared with beams reinforced with commonly used methods. Although not being a article focused on DIC analysis, few images were presented to compare behaviour of non-reinforced beam with automatically reinforced one and to show cracking propagation of a chosen automatically reinforced beam. The proposed method of reinforcement in the 3DCP process enables full automation and constructions with high bending strength, simultaneously reducing the level of risk involved in conventional construction industry.
The paper presents the studies on the reliability of printer Rebuild v3 during the implementation of the order of the Institute of Construction Technology. The object of the study was printing out of three miniature houses for fire tests and evaluation of burning ability of printouts made from the concrete. All the houses were printed during one session, lasting for 27h. Apart from the process of producing the objects, it was also possible to check the reliability and behaviour of the printer in so long and non-interrupted process.
PL
Artykuł przedstawia badania niezawodności drukarki REbuild v3 w trakcie realizacji zlecenia dla Instytutu Techniki Budowlanej. Przedmiotem badania było wydrukowanie trzech miniaturowych domków do testów ogniowych i oceny palności wydruków z betonu. Wszystkie domki zostały wydrukowane podczas jednej sesji trwającej 27 godzin. Poza samym procesem wykonania obiektów, udało się sprawdzić niezawodność i zachowanie drukarki w tak długim i nieprzerywanym procesie.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.