Bezinwazyjny monitoring obciążenia (Non-IntrusiveLoad Monitoring - NILM) jest systemem wspomagającym decyzje ukierunkowane na zmniejszenie zużycia energii elektrycznej w gospodarstwach domowych i obiektach komercyjnych. Głównym zadaniem w tym systemie jest identyfikacja urządzeń elektrycznych wykorzystująca analizę zdarzeń występujących w instalacji domowej lub poprzez analizę jej stanu ustalonego. W przypadku analizy stanu ustalonego istotny jest dobór parametrów elektrycznych, które w jednoznaczny sposób opisują pracujące urządzenia. W pracy przedstawiono analizę szerokiego spektrum parametrów elektrycznych (prąd, napięcie, moce oraz harmoniczne tych sygnałów, THD, CF, PF) w celu wskazania, które z nich charakteryzują się największą stabilnością w obrębie danego urządzenia oraz jak największą separowalnością wobec innych urządzeń. Tak wybrane parametry w kolejnym kroku wykorzystano do identyfikacji pracujących urządzeń elektrycznych.
EN
The main objective of Non-Intrusive Load Monitoring (NILM) electrical appliance identification is to reduce residential and commercial electricity consumption. This identification can be based on the analysis of events occurring in the home system or by analyzing its steady state. In the case of steady-state analysis, it is necessary to select electrical parameters that uniquely describe the electrical equipment in operation. This paper presents an analysis of a wide spectrum of electrical parameters (current, voltage, powers and harmonics of these signals, THD, CF, PF) in order to indicate those that are characterized by the greatest consistency within a given device and the greatest separability from other devices. Parameters selected in this way were used in the next step to identify working electrical devices.
Optimization of industrial processes such as manufacturing or processing of specific materials constitutes a point of interest for many researchers, and its application can lead not only to speeding up the processes in question, but also to reducing the energy cost incurred during them. This article presents a novel approach to optimizing the spindle motion of a computer numeric control (CNC) machine. The proposed solution is to use deep learning with reinforcement to map the performance of the reference points realization optimization (RPRO) algorithm used in the industry. A detailed study was conducted to see how well the proposed method performs the targeted task. In addition, the influence of a number of different factors and hyperparameters of the learning process on the performance of the trained agent was investigated. The proposed solution achieved very good results, not only satisfactorily replicating the performance of the benchmark algorithm, but also speeding up the machining process and providing significantly higher accuracy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.