Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In order to effectively promote the construction of the Yangtze River economic belt, it has become China’s national strategy to vigorously develop the river-sea-going transportation. In the present paper, theoretical analysis, numerical simulation and model test are combined together to develop f lat-type river-sea-going ship which is characterized with larger loading capacity, lower fuel consumption, better performance on energy-saving and environmental-friendly, excellent economy and higher transportation efficiency. Key technologies on hydrodynamic performance, structural safety, energy-saving technology and green ship technology are investigated to develop the river-sea-going ship. The developed “4E” level ship has great significance to the implementation of national strategic deployment
2
100%
EN
A mixed pseudo-orthogonal frequency coding (Mixed-POFC) structure is proposed as a new spreadspectrum technique in this paper, which employs frequency and time diversity to enhance tag properties and balances the spectrum utilization and code diversity. The coding method of SAW RFID tags in this paper uses Mixed-POFC with multi-track chip arrangements. The cross-correlation and auto correlation of Mixed-POFC and POFC are calculated to demonstrate the reduced overlap between the adjacent center frequencies with the Mixed-POFC method. The center frequency of the IDT and Bragg reflectors is calculated by a coupling of modes (COM) module. The combination of the calculation results of the Bragg reflectors shows that compared with a 7-chip POFC, the coding number of a 7-chip Mixed-POFC is increased from 120 to 144 with the same fractional bandwidth of 12%. To demonstrate the validity of Mixed-POFC, finite element analysis (FEA) technology is used to analyze the frequency characteristics of Mixed-POFC chips. The maximum error between designed frequencies and simulation frequencies is only 1.7%, which verifies that the Mixed-POFC method is feasible.
3
Content available Development of “4E” levelriver-sea-going ship
100%
EN
In order to effectively promote the construction of the Yangtze River economic belt, it has become China’s national strategy to vigorously develop the river-sea-going transportation. In the present paper, theoretical analysis, numerical simulation and model test are combined together to develop flat-type river-sea-going ship which is characterized with larger loading capacity, lower fuel consumption, better performance on energy-saving and environmental-friendly, excellent economy and higher transportation efficiency. Key technologies on hydrodynamic performance, structural safety, energy-saving technology and green ship technology are investigated to develop the river-sea-going ship. The developed “4E” level ship has great significance to the implementation of national strategic deployment.
EN
The monomineral flotation test and microcalorimetry were used to study the flotation kinetics and thermodynamic behavior of chalcopyrite and pyrite in high alkaline systems of lime and NaOH. The results showed that in these systems there were less hydrophilic substances on the chalcopyrite surface, so that the apparent activation energy of sodium butyl xanthate (SBX) adsorption on chalcopyrite surface was low. This promoted the adsorption of SBX and increased the flotation rate and recovery of chalcopyrite. In contrast, the hydrophilic Fe(OH)3 and SO42- formed by oxidation on the pyrite surface increased the adsorption activation energy of SBX. Thus, the flotation rate and recovery of pyrite were lower. Moreover, in the lime high alkaline system, the hydrophilic calcium film generated on the pyrite surface further hindered the adsorption of SBX, thereby further inhibiting pyrite in this environment. In other words, the lime high alkaline environment increased the apparent activation energy difference of SBX adsorption between chalcopyrite and pyrite compared to the NaOH system, facilitating the flotation separation of chalcopyrite and pyrite. The results can help with the theoretical research of flotation separation of other minerals, and provide guidance for developing low alkaline and lime-free pyrite depressants.
EN
The combined influence of silicon content and oxygen concentration on silicon-containing steels was investigated, via a heating route similar to that applied in the industrial reheating process, using a Simultaneous Thermal Analyzer (STA). Four different oxygen concentrations and three different isothermal holding times were designed. The results show that the effect of silicon on the mass gain depends on the oxygen concentration and the oxidation time. The mass gain of low-silicon steel is greater than that of high-silicon steel at 1260°C in the oxygen concentrations of 1.0 vol.% and 2.0 vol.%, even when the isothermal holding time is 90 minutes. However, there is a critical time point for mass gain in oxygen concentrations ≥3.0 vol.%. The mass gain of lowsilicon steel is greater before and smaller after this critical point. The critical time is deferred with decreasing oxygen concentration.
EN
In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s-1 to 1 s-1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s-1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s-1 due to the maximum adiabatic heating in the material.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.