Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With the rapid development of photovoltaic power generation technology, photovoltaic power generation system has gradually become an important component of the integrated energy system of marine. High precision short-term photovoltaic power generation forecasting is becoming one of the key technologies in ship energy saving and ship energy efficiency improving. Aiming at the characteristics of marine photovoltaic power generation system, we designed a highprecision power forecasting model (WT+ESN) for marine photovoltaic power generation system with anti-marine environmental interference. In this model, the information mining of the photovoltaic system in marine environment is carried out based on wavelet theory, then the forecasting model basing on echo state network is construct ed. Lastly, three kinds of error metrics are compared with the three traditional models by Matlab, the result shows that the model has high forecasting accuracy and strong robustness to marine environmental factors, which is of great significance to save fuel for ships, improve the energy utilization rate and assist the power dispatching and fuel dispatching of the marine power generation system
3
100%
|
|
tom S 3
102--109
EN
Ship stowage plan is the management connection of quae crane scheduling and yard crane scheduling. The quality of ship stowage plan affects the productivity greatly. Previous studies mainly focuses on solving stowage planning problem with online searching algorithm, efficiency of which is significantly affected by case size. In this study, a Deep Q-Learning Network (DQN) is proposed to solve ship stowage planning problem. With DQN, massive calculation and training is done in pre-training stage, while in application stage stowage plan can be made in seconds. To formulate network input, decision factors are analyzed to compose feature vector of stowage plan. States subject to constraints, available action and reward function of Q-value are designed. With these information and design, an 8-layer DQN is formulated with an evaluation function of mean square error is composed to learn stowage planning. At the end of this study, several production cases are solved with proposed DQN to validate the effectiveness and generalization ability. Result shows a good availability of DQN to solve ship stowage planning problem.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.