Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study compared the responses of Avicennia marina and Trichilia dregeana seeds, both of which are recalcitrant, to partial dehydration and storage. Seeds of A. marina exhibited a faster rate of water and viability loss (± 50% viability loss in 4 days) during partial dehydration, compared with T. dregeana (± 50% viability loss in 14 days). In A. marina embryonic axes, reactive oxygen species (ROS) production peaked on 4 days of dehydration and was accompanied by an increase in the GSH:GSSG ratio; it appears that the glutathione system alone could not overcome dehydration-induced oxidative stress in this species. In A. marina, ROS and axis water content levels increased during hydrated storage and were accompanied by a decline in the GSH:GSSG ratio and rapid viability loss. In T. dregeana embryonic axes, ROS production (particularly hydrogen peroxide) initially increased and thereafter decreased during both partial dehydration and hydrated storage. Unlike in A. marina embryonic axes, this reduced ROS production was accompanied by a decline in the GSH:GSSG ratio. While T. dregeana seeds may have incurred some oxidative stress during storage, a delay in and/or suppression of the ROS-based trigger for germination may account for their significantly longer storage longevity compared with A. marina. Mechanisms of desiccation-induced seed viability loss may differ across recalcitrant-seeded species based on the rate and extent to which they lose water during partial drying and storage. While recalcitrant seed desiccation sensitivity and, by implication, storage longevity are modulated by redox metabolism, the specific ROS and antioxidants that contribute to this control may differ across species.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.