Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The range of variability of the fluorescence properties of marine phytoplankton in different trophic types of seas and at different depths in the sea is analysed theoretically. An attempt is also made to interpret artificially induced in situ fluorescence measured with submersible fluorometers. To do this, earlier optical models of light absorption by phytoplankton (see Woźniak et al. 2000, this volume) and actual empirical data were applied. A straightforward theoretical model of artificially photoinduced phytoplankton fluorescence accounting for the complex influence of different photophysiological characteristics of phytoplankton and the optical characteristics of the instrument has been worked out. A physical method of determining chlorophyll a concentrations in seawater from fluorescence measured in situ with contact fluorometers can be based on this model.
EN
In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and measured data on primary production in the Baltic (r = 0.89), Norwegian (r = 0.77) and South China (r = 0.76) Seas.
EN
Using laboratory cultures of algae and natural phytoplankton populations from Nhatrang Bay (South China Sea), the relationship between the chlorophyll fluorescence F0, the chlorophyll a concentration Ca and light absorption capacities of algae cells was studied. It is shown that the ratio F0/Ca depends mainly on the species composition of the algae population; hence, the concentration Ca can be measured with the fluorescence method with acceptable accuracy only when the species composition of algae populations varies over a rather narrow range. The fluorescence F0 can, however, be a good index of the total absorption capacities of different phytoplankton species, because the intensity of F0 depends on the sum total of light absorbed by all photosynthetic pigments in a plant cell. Thus, the fluorescence F0 measures not only the concentration of chlorophyll a, but that of all photosynthetic pigment concentrations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.