Metal nanoparticles (MNPs) belong mostly to the engineered type of nanoparticles and have not only unique physical and chemical properties but also different biological actions. In recent years, noble MNPs and their nano-sized agglomerates (collectively referred to as nanoparticles or particles in the subsequent sections) have been the subjects of much focused research due to their unique electronic, optical, mechanical, magnetic and chemical properties that can be significantly different from those of bulk materials. To enhance their use, it is important to understand the generation, transport, deposition, and interaction of such particles. Synthesis of MNPs is based on chemical or physical synthetic procedures and by use of biological material ("green synthesis" as an environmentally benign process) including bacteria, algae and vascular plants (mainly metallophytes). In biological methods for preparation of metal nanoparticles mainly leaf reductants occurring in leaf extracts are used. MNPs can be formed also directly in living plants by reduction of the metal ions absorbed as a soluble salt, indicating that plants are a suitable vehicle for production of MNPs. These methods used for preparation of MNPs are aimed to control their size and shape. Moreover, physicochemical properties of MNPs determine their interaction with living organisms. In general, inside the cells nanoparticles might directly provoke either alterations of membranes and other cell structures or activity of protective mechanisms. Indirect effects of MNPs depend on their physical and chemical properties and may include physical restraints, solubilization of toxic nanoparticle compounds or production of reactive oxygen species. Toxic impacts of MNPs on plants is connected with chemical toxicity based on their chemical composition (eg release of toxic metal ions) and with stress or stimuli caused by the surface, size and shape of these nanoparticles. Positive effects of MNPs were observed on the following plant features: seed germination, growth of plant seedlings, stimulation of oxygen evolution rate in chloroplasts, protection of chloroplasts from aging for long-time illumination, increase of the electron transfer and photophosphorylation, biomass accumulation, activity of Rubisco, increase of quantum yield of photosystem II, root elongation, increase of chlorophyll as well as nucleic acid level and increase in the shoot/root ratio. However, it should be stressed that MNPs impact on human and environmental health remains still unclear.
PL
Ze względu na unikalne właściwości fizyczne i chemiczne, ale także różne działanie biologiczne nanocząstek metali (MNPS) są obiektem zainteresowania nowo powstałej inżynierii tych materiałów. W ostatnich latach MNPS metali szlachetnych (zbiorowo określane w dalszej części tekstu jako nanocząstki lub cząstki) były poddawane wielu badaniom ze względu na ich unikalne właściwości elektroniczne, optyczne, mechaniczne, magnetyczne i chemiczne, które mogą być znacząco różne od właściwości materiałów litych. Synteza MNPS polega na procesach chemicznych lub fizycznych oraz na wykorzystaniu materiału biologicznego ("zielona synteza" - proces przyjazny środowisku), w tym bakterii, glonów i roślin naczyniowych (głównie metalofitów). W biologicznych metodach wytwarzania nanocząstek metali używane są głównie substancje redukujące, występujące w ekstraktach z liści. MNPS również mogą być utworzone bezpośrednio w żywych roślinach przez redukcję jonów metali absorbowanych w postaci rozpuszczalnych soli, co wskazuje, że rośliny są odpowiednim środkiem produkcji MNPS. Metody te pozwalają na kontrolę rozmiarów i kształtu cząstek. Jest to ważne, ponieważ właściwości fizykochemiczne MNPS określają ich oddziaływanie z żywymi organizmami. Zwykle w komórkach nanocząstki mogą bezpośrednio wywoływać zmiany w błonach komórkowych albo w innych strukturach oraz mogą wpływać na aktywność komórek lub na ich mechanizmy ochronne. Pośrednio skutki działania MNPS zależą od ich właściwości fizycznych i chemicznych. Skutki te mogą obejmować ograniczenia fizyczne, rozpuszczanie toksycznych MNPS lub wytwarzanie reaktywnych form tlenu. Toksyczny wpływ MNPS na rośliny jest związany z toksycznością chemiczną, uzależnioną od składu chemicznego (np. uwalnianie toksycznych jonów metali) oraz ze stymulacją lub napięciami wywołanymi przez kontakt z powierzchnią. Istotne są także rozmiary i kształt nanocząstek. Pozytywne wpływy MNPS obserwowano na: kiełkowanie nasion, wzrost siewek roślin, stymulację tempa przemiany tlenu w chloroplastach, ochronę przed starzeniem chloroplastów wywołanym przez długotrwałe oświetlanie, zwiększenie transferu elektronów i fotofosforylacji, gromadzenie biomasy, aktywność RuBisCO, wzrost wydajności kwantowej fotosystemu II, wzrost korzeni, wzrost chlorofilu, jak również poziomu kwasów nukleinowych i stosunku długości pędów i korzeni. Jednak należy podkreślić, że wpływ MNPS na zdrowie ludzi i na środowisko jest nadal niejasny.
Metal nanoparticles (MNPs) are attracting attention for many technological applications as catalysts, in optical materials, medical treatments, sensors, and in energy storage and transmission. The function and use of these materials depend on their composition and structure. A practical route for synthesis of MNPs is by chemical procedure and by use of biological material (“green synthesis” as a dependable, environmentally benign process) including bacteria, algae and vascular plants (mainly metallophytes). Currently, there are various chemical and physical synthetic methods used for preparation of metal nanoparticles and several experimental techniques aimed at controlling the size and shape of MNPs. Toxic effects of MNPs on plants could be connected with chemical toxicity based on their chemical composition (eg release of toxic metal ions) and with stress or stimuli caused by the surface, size and shape of the particle. The physicochemical properties of nanoparticles determine their interaction with living organisms. In general, plant cells possess cell walls that constitute a primary site for interaction and a barrier for the entrance of nanoparticles. Inside cells, nanoparticles might directly provoke either alterations of membranes and other cell structures or activity of protective mechanisms. Indirect effects of MNP depend on their chemical and physical properties and may include physical restraints, solubilization of toxic nanoparticle compounds, or production of reactive oxygen species. However, it should be stressed that impact of MNPs on human and environmental health remains still unclear. Thus, evaluation scheme for national nanotechnology policies (that would be used to review the whole national nanotechnology plan) was recommended. The three following criteria for policy evaluation were suggested: appropriateness, efficiency and effectiveness.
PL
Nanocząstki metali (MNPS) przyciągają uwagę ze względu na ich wykorzystanie w wielu zastosowaniach jako katalizatory, materiały optyczne, czujniki, w zabiegach medycznych, w przechowywaniu i transmisji energii. Funkcja i zastosowanie tych materiałów zależą od ich składu i struktury. Praktycznymi drogami syntezy MNPS są metody chemiczne i wykorzystanie materiałów biologicznych („zielona synteza” niezawodna, przyjazna środowisku), w tym bakterii, glonów i roślin naczyniowych (głównie metalofitów). Obecnie stosowane są różne fizyczne i chemiczne metody wytwarzania nanocząstek metali i kilka technik eksperymentalnych, mających na celu kontrolę wielkości i kształtu MNPS. Toksyczny wpływ MNPS na rośliny może być związany z toksycznością chemiczną ze względu na ich skład chemiczny (np. uwalnianie jonów metali) oraz stresem lub stymulacją spowodowanymi przez powierzchnię, wielkość i kształt cząstek. Interakcje z organizmami żywymi są określane przez fizykochemiczne właściwości nanocząstek. Ogólnie rzecz biorąc, ściany komórkowe roślin stanowią podstawowy element interakcji i barierę wejścia nanocząstek. Wewnątrz komórek nanocząstki mogą bezpośrednio wywoływać zarówno zmiany błon komórkowych, jak i innych struktur lub spowodować aktywizację mechanizmów ochronnych. Pośrednie skutki MNP zależą od ich właściwości chemicznych i fizycznych, mogących prowadzić do tworzenia pewnych ograniczeń fizycznych, rozpuszczania związków toksycznych czy wytwarzania reaktywnych form tlenu. Jednak należy podkreślić, że wpływ MNPS na zdrowie ludzi i stan środowiska jest nadal niejasny. Z tego względu konieczne jest stworzenie schematu systemu oceny polityki w dziedzinie nanotechnologii (które zostaną wykorzystane do przeglądu całości krajowego planu nanotechnologicznego). Zaproponowano trzy następujące kryteria oceny polityki: adekwatność, efektywność i skuteczność.
Biomass energy has been recognized as one of the most promising and most important renewable energy sources in near future. It was emphasized that besides of woody plant species as energetic plants can be also used both crops (mainly maize, rapeseed, sunflower, soybean, sorghum, sugarcane) and non-food plants (e.g. switchgrass, jatropha, algae). Energetic plant was characterized as a plant grown as a low cost and low maintenance harvest used to make biofuels, or directly exploited for its energy content (heating or electric power production). Moreover, by-products (green waste) of crops and non-food plants can be also used to produce biofuels. It was stressed that European production of biodiesel from energy crops has grown steadily in the last decade, principally focused on rapeseed used for oil as a substance in FAME (fatty acid methyl ester) production. Similar tendency was observed for bioethanol (as a biocomponent in gasoline) prepared mainly from maize or cereals. At present bioethanol and biodiesel primarily produced from the crops (maize and rapeseed) are used in the traffic. However, in the past these crops were used only as a food. Consequently, a new ethical problem appeared: discrepancy between utilization of maize and rapeseed as a food or as an alternative source of energy. New biotechnological approach showed that energetic plants have also significant application for environment friendly management, mainly in phytoremediation technology. Phytoremediation was presented as a cleanup technology belonging to the cost-effective and environment-friendly biotechnology. Thus several types of phytoremediation technologies being used today were briefly outlined.
PL
Energia biomasy jest uznana za jedno z najbardziej obiecujących i najważniejszych odnawialnych źródeł energii. Podkreślono, że oprócz gatunków roślin drzewiastych, jako rośliny energetyczne mogą być również wykorzystywane uprawy (głównie kukurydzy, rzepaku, słonecznika, soi, sorgo, trzciny cukrowej) i inne rośliny niespożywcze (np. proso, jatrofa, glony). Uprawa i zbiór roślin energetycznych wymaga niewielkich kosztów, a wykorzystuje się je do produkcji biopaliw lub bezpośredniego uzyskania energii (ogrzewanie lub produkcja energii elektrycznej). Ponadto, produkty uboczne upraw (odpady zielone) i inne rośliny niespożywcze mogą być także wykorzystywane do produkcji biopaliw. Podkreślono, że europejska produkcja biodiesla z roślin energetycznych stale rośnie w ostatnim dziesięcioleciu, koncentrując się głównie na oleju rzepakowym stosowanym w produkcji FAME (estry metylowe kwasów tłuszczowych). Podobne tendencje zaobserwowano w przypadku bioetanolu (jako biokomponentu benzyny), otrzymywanego przede wszystkim z kukurydzy i zbóż. Obecnie bioetanol i biodiesel, wytwarzane głównie z kukurydzy i rzepaku, są stosowane w transporcie. Natomiast w przeszłości rośliny te były używane tylko jako żywność. W konsekwencji pojawiły się nowe problemy etyczne wynikające z rozbieżność między wykorzystaniem kukurydzy i rzepaku jako żywności lub jako alternatywnego źródła energii. Nowe podejście biotechnologiczne pokazuje, że rośliny energetyczne mają również duże znaczenie dla przyjaznego zarządzania środowiskiem, szczególnie w fitoremediacji. Oczyszczanie za pomocą fitoremediacji jest uważane za technologię oszczędną i przyjazną dla środowiska. W skrócie zaprezentowano niektóre z obecnie wykorzystywanychrodzajów fitoremediacji.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Effect of three cadmium compounds (CdSeO4, CdSeO3 and Cd(NCSe)2(nia)2) containing Se in different oxidation states were used for experiments. Pea seedlings (cv. Felix) cultivated in hydroponic solutions under control conditions were treated with the above-mentioned compounds for two weeks (c = 3÷120 µmol dm-3). Then root and shoot dry mass was estimated and the concentrations of Cd and Se in plant organs were determined using AAS. Bioaccumulation factors related to both investigated elements (Cd, Se) as well as translocation factors were evaluated. Higher compound concentrations were toxic and desiccation of the shoots was observed. Cd concentration in the roots reached higher levels than in the shoots and accumulated Cd amount in plant organs increased with increasing Cd concentration. Whereas treatment with CdSeO3 and Cd(NCSe)2(nia)2) resulted in expressively higher Se concentration in roots, for CdSeO4 treatment Se concentration in shoots exceeded Se concentration in the roots. Therefore treatment with CdSeO4resulted in much higher mobility of Cd and Se within the plants than the treatment with CdSeO3 and Cd(NCSe)2(nia)2).
PL
W eksperymencie wykorzystano trzy związki kadmu (CdSeO4, CdSeO3, Cd(NCSe)2(nia)2) zawierające Se w rożnych stopniach utlenienia. Wschody grochu uprawiane w wodzie w warunkach laboratoryjnych były traktowane wymienionymi związkami przez dwa tygodnie (c = 3÷120 µmol-dm-3). Następnie w próbkach korzeni i pędów roślin oznaczano stężenia Cd i Se z pomocą AAS. Dokonano oceny bioakumulacji i czynników wpływających na przemieszczanie się badanych pierwiastków. Większe stężenie związków były toksyczne i powodowały wysuszenie pędów roślin. Stężenia Cd w korzeniach były większe niż w pędach roślin, a stężenie zakumulowanego Cd w organach rośliny zwiększało się wraz ze wzrostem stężenia Cd. Podczas działania CdSeO3, Cd(NCSe)2(nia)2wyniki wyraźnie wskazywały, że stężenie Se w korzeniach wzrosło, podczas działania związkiem CdSeO4 stężenie Se w pędach było większe od stężenia Se w korzeniach. Zatem w wyniku działania CdSeO4 ma miejsce większa kumulacja Cd i Se w roślinie niż podczas działania związkami CdSeO3 i CdSeO3, Cd(NCSe)2(nia)2.
The objective of this contribution is to evaluate such energetic plants that will not compete with conventional agriculture. Our analysis is based on definition of energetic plant - a plant grown as a low cost and low maintenance harvest used to make biofuels, or directly exploited for its energy content (heating or electric power production). It was emphasized that besides of woody plant species as energetic plants can be also used both crops and non-food plants. Besides switch grass (Panicum virgatum L), jatropha (Jatropha curcas L) or algae some species from family Euphorbiaceae and Asteraceae store high concentration of triacylglycerols and latex, that can be used for production of biocomponents into the fuels. Species Amaranthus sp., Miscanthus sinensis Anderss., Euphorbia marginata L, Ambrosia artemisifolia L, Helianthus tuberosus L, and Solidago canadensis L successfully grown under climatic conditions of Slovakia, are presented as a potentially used energetic plant species - herbs - that will not compete with the crops. However, it should be stressed that mentioned species are (like jatropha) invasive plants. Since production of biofuels from crops as well as from non-food plants is still actual, carbon dioxide emission and energy balance of biofuel production is presently intensively discussed. Life-cycle analysis (LCA) appeared as a useful tool to appreciate impact of biofuels on the environment. LCA is presented as a scientific method to record environmental impacts from fuel production to final disposal/recycling. This approach is also known as “well to wheel” for transport fuels or “field to wheel” for biofuels. In order to investigate the environmental impacts of bioenergy and biofuels it is necessary to account for several other problems such are acidification, nitrification, land occupation, water use or toxicological effects of fertilizers and pesticides.
PL
Celem pracy było wytypowanie takich roślin energetycznych, które nie będą konkurować z rolnictwem konwencjonalnym. Punktem wyjścia przedstawionej analizy jest definicja roślin energetycznych - roślin uprawianych przy niskich kosztach utrzymania i zbioru, stosowanych do produkcji biopaliw lub bezpośrednio wykorzystywanych do produkcji energii (ciepła lub wytwarzania energii elektrycznej). Podkreślono, że oprócz gatunków roślin drzewiastych roślinami energetycznymi mogą być również zboża i rośliny niebędące pożywieniem. Oprócz trawy (Panicum virgatum L) i jatrofy (Jatropha curcas L), niektóre gatunki glonów z rodziny Asteraceae i Euphorbiaceae zawierające duże stężenia triacylogliceroli i lateksu, mogą być wykorzystane do produkcji biokomponentów paliw. Gatunki Amaranthus sp., Anderss Miscanthus sinensis, Euphorbia marginata L, Ambrosia artemisifolia L, Helianthus tuberosus L, Solidago canadensis L mogą być pomyślnie uprawiane w warunkach klimatycznych Słowacji. Rośliny te przedstawiane są jako potencjalnie użyteczne gatunki roślin energetycznych, niekonkurujących z uprawami roślin spożywczych. Należy jednak podkreślić, że wymienione gatunki (np. jatrofa) należą do roślin inwazyjnych. Ponieważ produkcja biopaliw zarówno z roślin uprawnych, jak też z roślin nieżywnościowych jest nadal prowadzona, dlatego emisja ditlenku węgla i bilans energii z biopaliw obecnie są intensywnie dyskutowane. Analiza cyklu życia (LCA) to użytecznenarzędzie określania wpływu biopaliw na środowisko przyrodnicze. LCA jest przedstawiona jako metoda naukowa, pozwalająca na ocenę oddziaływania paliwa na środowisko od produkcji do ostatecznej jego likwidacji/recyklingu. Takie podejście jest również znane jako „szyb naftowy do koła“ dla paliw transportowych lub „pole do koła“ w odniesieniu do biopaliw. W celu zbadania wpływu bioenergii i biopaliw na środowisko należy uwzględnić kilka innych problemów, takich jak zakwaszenie, nitryfikacja, użytkowanie terenu, zużycie wody lub toksycznych nawozów i pestycydów.
The aim of this study was to investigate the phytotoxic effects of seven metal ions (Cd(II), Cr(VI), Cu(II), Hg(II), Ni(II), Pb(II) and Zn(II)) on length of roots of five rapeseed (Brassica napus L. subsp. napus) cultivars registered in Slovakia (Atlantic, Baldur, Californium, Oponent and Verona). The phytotoxic effect of metals was evaluated using IC50 values. The studied metal ions inhibited germination and root growth of rapeseed seedlings. In general, the toxicity of metal ions decreased in the following order Cu > Cr >Hg > Cd > Pb > Ni > Zn. Atlantic, Baldur and Californium were more sensitive to Cd than to Ni, for Oponent and Verona higher toxicity exhibited Ni. From the studied rapeseed cultivars Atlantic and Californium were found to be most sensitive to tested metals. On the other hand, high tolerance to metal treatment was determined for Baldur. Czech cultivar Opponent showed high tolerance to Cd, Cr, Cu and Pb, but it was sensitive to Hg and Ni. The above-mentioned results confirmed differences in the metal tolerance of tested rapeseed cultivars.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.