Purpose. Genetic factors play an important role in physical performance. In this study, the polymorphism of the angiotensin-converting enzyme gene (ACE) was analyzed in relation to the level of physical fitness, measured by maximal oxygen uptake (VO2max). Methods. Molecular genetic research on the ACE gene was carried out on a group of 154 men and 85 women. All of the subjects were Polish students at the University School of Physical Education in Poznań and included professional athletes representing various sport disciplines and levels of fitness. Results. Allele I was found to have an advantageous effect on higher maximal oxygen uptake values and, in addition, a characteristic distribution of genotypes was found, where allele II was more common in individuals practicing aerobic sports and allele DD in individuals training anaerobic disciplines. Conclusion. No significant associations were found between I/D polymorphism in the ACE gene and VO2max values but certain tendencies were found for those individuals with the ACE II genotype.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Uncoupling proteins 2 and 3 (UCP2 and UCP3) as mitochondrial electron transporters are involved in regulation of ATP production and energy dissipation as heat. Energy efficiency plays an important role in physical performance, especially in aerobic fitness. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of the UCP2 and UCP3 genes. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fitness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximum oxygen uptake (VO2max) and analysis of an insertion/deletion (I/D) polymorphism in the 3'untranslated region of exon 8 of the UCP2 gene and a C>T substitution in exon 5 (Y210Y) of the UCP3 gene. No statistically significant associations were found, only certain trends. Insertion allele (I) of the I/D UCP2 and the T allele of the UCP3 gene were favourable in obtaining higher VO2max level and might be considered as endurance-related alleles.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The search for genes with a positive influence on physical fitness is a difficult process. Physical fitness is a trait determined by multiple genes, and its genetic basis is then modified by numerous environmental factors. The present study examines the effects of the polymorphism of creatine kinase (CKM) gene on VO2max - a physiological index of aerobic capacity of high heritability. The study sample consisted of 154 men and 85 women, who were students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. The study revealed a positive effect of a rare G (NcoI-) allele of the CKM gene on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism. Also a tendency was noted in individuals with NcoI-/- (GG) and NcoI-/+ (GA) genotypes to reach higher VO2max levels.
The map of candidate genes that can potentially affect physical fitness becomes larger every year, and they are associated with such aspects as respiratory and cardiovascular stability; body build and composition - especially muscle mass and strength; carbohydrate and lipid metabolism; response to training; and exercise intolerance.The aim of this study was to analyze the relationship between the CA repeat polymorphism of the P1 promoter of the IGF1 gene and the structure of motor skills in the two groups of Polish young athletes in 2007-2009. In this study, 350 young sportsmen representing different sports disciplines were examined (age = 15.5 ± 0.5 years), by genotyping the IGF1 gene and determining the structure of motor skills using the International Physical Fitness Test (IPFT) battery. The multiple stepwise regression was used to determine the impact of the investigated motor skills on the indicator of the overall physical fitness, measured by the total score of the International Physical Fitness Test (IPFT). The analysis showed some regularity related to the character of the IGF1 gene polymorphism. It can be concluded that the two groups of young boys athletes practicing various sports disciplines (kinds of physical exercise) displayed similar associations between CA repeat polymorphism of the P1 promoter of the IGF1 gene and the level of motor effects. Our results suggest that this polymorphism may be a genetic marker of the physical performance phenotype. We demonstrated that CA repeat polymorphism of the P1 promoter of the IGF1 gene was associated with strength predispositions in the homozygous and non-carriers groups. In the group who were heterozygous it was speed-strength aptitudes.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Physical fitness is a trait determined by multiple genes, and its genetic basis is modified by numerous environmental factors. The present study examines the effects of the (CA)n tandem repeats polymorphism in IGFI gene and SNP Alw21I restriction site -202 A>C polymorphism in IGF1BP3 on VO2max - a physiological index of aerobic capacity of high heritability. The study sample consisted of 239 (154 male and 85 female) students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. An association was found between -202 A/C polymorphism of IGFBP3 gene with VO2max in men. Higher VO2max values were attained by men with CC genotype, especially male athletes practicing endurance sports and sports featuring energy metabolism of aerobic/anaerobic character. A statistically significant influence of allele 188 and genotype 188/188 of tandem repeats (CA)n polymorphism of IGF1 gene on VO2max was found in women. Also, lower values of maximal oxygen uptake were noted in individuals with allele 186 or genotype 186/186, and higher VO2max values in athletes with allele 194.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.