This study analyzes the most commonly used operators of the Riemann-Liouville, the Caputo-Fabrizio, and the Atangana-Baleanu integral operators. Firstly, a numerical scheme for the Riemann-Liouville fractional integral has been discussed. Then, two numerical techniques have been suggested for the remaining two operators. The experimental order of convergence for the schemes is further supported by the computations of absolute relative error at the final nodal point over the integration interval [0, T ]. Comparative analysis of the integrals reveals that the Riemann-Liouville fractional integral yields the most minor errors and the most significant experimental order of convergence in the majority of functions, particularly when the fractional-order parameter α → 0. It is worth noting that the Atangana-Baleanu has proved to be an essential operator for solving many dynamical systems that a single RL operator cannot handle. All of the three integral operators coincide with each other for α = 1. Mathematica 11.3 for an Intel(R) Core(TM) i3-4500U procesor running on 1.70 GHz is used to carry out all the necessary computations.
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
The present study proposes a new explicit nonlinear scheme that solves stiff and nonlinear initial value problems in ordinary differential equations. One of the promising features of this scheme is its fourth-order convergence with strong stability having an unbounded region. A modern approach for relative stability growth analysis is also presented under order stars conditions. The scheme is also good in dealing with singular and stiff type of models. Comparing numerical experiments using various errors, including maximum absolute global error over the integration interval, absolute error at the endpoint, average error, norm of errors, and the CPU times (seconds), shows better performance. An adaptive step-size approach seems to increase the performance of the proposed scheme. The numerical simulations assure us of L -stability, consistency, order, and rapid convergence.
Lie symmetry analysis is considercd as one of the most powerful techniques that has been used for analyzing and extracting various types of solulions to partial differential equations. Conservation laws reflect important aspects of the behavior and pcoperties of physical systems. This paper focuses on the investigation of the (1+1)-dimensional time-fractional modified Benjamin-Bona-Mahony equation (mBBM) incorporating Riemann-Louville derivatives (RLD). Through the application of Lie symmetry analysis, ihe study cxplores similarity reductions and transforms the problem into a nonlinear ordinary differential equation with fractional order. A power series solution is obtained using the Erdelyi-Kober fractional operator, and the convergence of the solutions is analyzed. Furthemore, novel conservation laws for the time-fractional mBBM equation are established. The findings of the current work contribute to a deeper understanding of the dynamics of this fractional evolution equation and provide valuable insights into its behavior.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.