We consider a general concept of Daugavet property with respect to a norming subspace. This concept covers both the usual Daugavet property and its weak* analogue. We introduce and study analogues of narrow operators and rich subspaces in this general setting and apply the results to show that a quotient of L₁[0,1] by an ℓ₁-subspace need not have the Daugavet property. The latter answers in the negative a question posed to us by A. Pełczyński.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We investigate rich subspaces of L₁ and deduce an interpolation property of Sidon sets. We also present examples of rich separable subspaces of nonseparable Banach spaces and we study the Daugavet property of tensor products.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW