Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The application of aqueous two-phase systems (ATPS) is a cost-effective and simple method of protein separation (including enzymes) from complex systems. The first stage of designing the protein purification process in an ATPS involves the identification of the conditions for the formation of a given extraction system. For this purpose, the conditions for the formation of ATPSs in a thermoseparating EO50PO50 polymer/potassium phosphates system have been studied. Factors determining the ATPS formation comprised: separation temperature (4ºC or 20ºC), phosphate solution pH (6, 7.5 or 9) as well as the concentration of NaCl introduced into the systems (0.085 M, 0.475 M and 0.85 M). ATPS without NaCl were prepared as well. The conditions for the formation of the primary EO50PO50/potassium phosphate ATPS were determined with their phase diagrams. It was observed that with an increase of phosphate pH and NaCl concentration in the system, there was a decrease of the EO50PO50 and phosphate concentrations necessary to form a primary ATPS. After the primary two-phase separation, the top phase (rich in the EO50PO50 polymer) was partitioned from the bottom phase (rich in phosphates). Next, by means of polymer phase thermoseparation, a secondary two-phase system was formed. In the secondary EO50PO50/phosphate ATPS, the bottom phase was formed by the concentrated EO50PO50 polymer (30-80% concentration), while the top phase by a solution composed mainly of water, containing phosphate ions and remains of EO50PO50 polymer (3-7%).
Our previous studies showed that glycerol fermentation by Hafnia alvei AD27 strain was accompanied by formation of high quantities of lactate. The ultimate aim of this work was the elimination of excessive lactate production in the 1,3-propanediol producer cultures. Group II intron-mediated deletion of ldh (lactate dehydrogenase) gene in an environmental isolate of H. alvei AD27 strain was conducted. The effect of the Δldh genotype in H. alvei AD27 strain varied depending on the culture medium applied. Under lower initial glycerol concentration (20 gL-1), lactate and 1,3-propanediol production was fully abolished, and the main carbon flux was directed to ethanol synthesis. On the other hand, at higher initial glycerol concentrations (40 gL-1), 1,3-propanediol and lactate production was recovered in the recombinant strain. The final titers of 1,3-propanediol and ethanol were similar for the recombinant and the WT strains, while the Δldh genotype displayed significantly decreased lactate titer. The by-products profile was altered upon ldh gene deletion, while glycerol utilization and biomass accumulation remained unaltered. As indicated by flow-cytometry analyses, the internal pH was not different for the WT and the recombinant Δldh strains over the culture duration, however, the WT strain was characterized by higher redox potential.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.