The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. Here, a non-homogeneous material is considered, where the elastic-plastic properties change discontinuously. In the first part, we have found the extremal relation between the displacement formulation defined on the space of bounded deformation and the stress formulation of the variational problem in Hencky plasticity. In the second part, we prove that the displacement solution belongs to the appropriate Sobolev space (if the stress solution belongs to the interior of a set of admissible stresses, at each point). Then we deduce a regularity theorem for displacement solutions in composite materials.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. A non-homogeneous material whose elastic-plastic properties change discontinuously is considered. We find (in an explicit form) the extremal relation between the displacement formulation (defined on the space of bounded deformation) and the stress formulation of the variational problem in Hencky plasticity. This extremal relation is used in the proof of the regularity of displacements. In part II of the paper, we will prove that the displacement solution belongs to the classical Sobolev space (if the stress solution belongs to the interior of a set of admissible stresses, at each point). We will find the regularity theorem for displacement solutions in composite materials whose elastic-plastic properties may change discontinuously.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.