Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum $$ \sum\limits_{X \leqslant n \leqslant 2X} {\lambda (n)e^{2\pi i\alpha \sqrt n } } ,0 \ne \alpha \in \mathbb{R} $$ The main tool we use is Vaughan’s identity for λ(n).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.