Virus-like particles (VLPs) assemble spontaneously during the viral cycle or in heterologous systems during expression of viral structural protein. Depending on the complexity of the VLPs, they can be obtained by expression in prokaryotic or eukaryotic expression system from the suitable recombinant vectors, or formed in cell-free conditions. Moreover, they can be built from proteins of a single virus, or can present the proteins or peptides derived from a virus or cell on a platform derived from any other single virus, thus forming chimeric VLPs. VLPs are best known for their immunogenic properties, but the versatility of VLPs allows a wide variety of applications. They are lately in the centre of investigations in vaccinology, drug delivery and gene therapy. This review focuses on utilization of VLPs for drug delivery.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Exogenous proteinase inhibitors are valuable and economically interesting protective biotechnological tools. We examined whether small proteinase inhibitors when fused to a selected target protein can protect the target from proteolytic degradation without simultaneously affecting the function and activity of the target domain. Two proteinase inhibitors were studied: a Kazal-type silk proteinase inhibitor (SPI2) from Galleria mellonella, and the Cucurbita maxima trypsin inhibitor I (CMTI I). Both inhibitors target serine proteinases, are small proteins with a compact structure stabilized by a network of disulfide bridges, and are expressed as free polypeptides in their natural surroundings. Four constructs were prepared: the gene for either of the inhibitors was ligated to the 5' end of the DNA encoding one or the other of two selected target proteins, the coat protein (CP) of Potato potyvirus Y or the Escherichia coli β-glucuronidase (GUS). CMTI I fused to the target proteins strongly hampered their functions. Moreover, the inhibitory activity of CMTI I was retained only when it was fused to the CP. In contrast, when fused to SPI2, specific features and functions of both target proteins were retained and the inhibitory activity of SPI2 was fully preserved. Measuring proteolysis in the presence or absence of either inhibitor, we demonstrated that proteinase inhibitors can protect target proteins used either free or as a fusion domain. Interestingly, their inhibitory efficiency was superior to that of a commercial inhibitor of serine proteinases, AEBSF.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.