The aim of this paper is to present a starting point for proving existence of injective minimal models (cf. [8]) for some systems of complete differential graded algebras.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let 𝓐(ℝ) and 𝓔(ℝ) denote respectively the ring of analytic and real entire functions in one variable. It is shown that if 𝔪 is a maximal ideal of 𝓐(ℝ), then 𝓐(ℝ)/𝔪 is isomorphic either to the reals or a real closed field that is an η₁-set, while if 𝔪 is a maximal ideal of 𝓔(ℝ), then 𝓔(ℝ)/𝔪 is isomorphic to one of the latter two fields or to the field of complex numbers. Moreover, we study the residue class rings of prime ideals of these rings and their Krull dimensions. Use is made of a classical characterization of algebraically closed fields due to E. Steinitz and techniques described in L. Gillman and M. Jerison's book on rings of continuous functions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.