Let 𝓐 be a Banach algebra and let ϕ be a nonzero character on 𝓐. We introduce and study a new notion of amenability for 𝓐 based on existence of a ϕ-approximate diagonal by modifying the concepts of ϕ-amenability and pseudo-amenability. We then apply these results to characterize ϕ-pseudo-amenability of various Banach algebras related to locally compact groups such as group algebras, measure algebras, certain dual algebras and Lebesgue-Fourier algebras.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let 𝓐 be a Banach algebra and let ℳ be a W*-algebra. For a homomorphism Φ from 𝓐 into ℳ, we introduce and study ℳ -valued invariant Φ-means on the space of bounded linear maps from 𝓐 into ℳ. We establish several characterizations of existence of an ℳ -valued invariant Φ-mean on B(𝓐,ℳ). We also study the relation between existence of an ℳ -valued invariant Φ-mean on B(𝓐,ℳ) and amenability of 𝓐. Finally, for a character ϕ of 𝓐, we give some descriptions for ϕ-amenability of 𝓐 in terms of ℳ -valued invariant Φ-means.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
There are several algebras associated with a locally compact group 𝓖 which determine 𝓖 in the category of topological groups, such as L¹(𝓖), M(𝓖), and their second duals. In this article we add a fairly large family of locally convex algebras to this list. More precisely, we show that for two infinite locally compact groups 𝓖₁ and 𝓖₂, there are infinitely many locally convex topologies τ₁ and τ₂ on the measure algebras M(𝓖₁) and M(𝓖₂), respectively, such that (M(𝓖₁),τ₁)** is isometrically isomorphic to (M(𝓖₂),τ₂)** if and only if 𝓖₁ and 𝓖₂ are topologically isomorphic. In particular, this leads to a new proof of Ghahramani-Lau's isometrical isomorphism theorem for compact groups, different from those of Ghahramani and J. P. McClure (2006) and Dales et al. (2012).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.