The dissolution characteristics of minerals, dissolution of flotation agents in solutions, and equilibrium of dissociations and associations serve as the basis for determining the optimal conditions for the effective components of flotation agents and for evaluating the interaction between flotation agents and minerals. This basis provided the theoretical support for the flotation separation of minerals. Based on this, the flotation separation of magnesite and calcite was realized using sodium dihydrogen phosphate, also known as monosodium phosphate (MSP), as a regulator and dodecylamine (DDA) as a collector. When MSP was used in the DDA system, single-mineral and binary mixed-ore flotation tests revealed that the floatability of calcite was significantly greater than that of magnesite and the separation of magnesite and calcite was more effective, respectively. Zeta potential measurements showed that MSP-containing negative groups could selectively reduce the zeta potential of calcite and promote the adsorption of DDA-containing positive groups on the surface of the calcite. However, this effect was negligible on the zeta potential of magnesite. Due to the stronger affinity of MSP to Ca2+ than that to Mg2+, as demonstrated by Fourier transform infrared and X-ray photoelectron spectroscopy analyses, the MSP was adsorbed onto the surface of calcite primarily by hydrogen bonds rather than magnesite, which promoted the stronger adsorption of DDA-containing positive groups on the surface of the calcite. As a result, the differences in the floatability of magnesite and calcite were enlarged by MSP. Thus, MSP can be utilized an effective regulator for the efficient separation of magnesite from calcite via reverse flotation.
The influence of pulp temperature on the floatability of magnesite and dolomite were studied by flotation test. Inductive Coupled Plasma Emission Spectrometer (ICP) was used to measure the dissolved metal ion content in the pulp by minerals in solution. X-ray photoelectron spectroscopy (XPS) was used to measure the presence and relative content of metal ions on mineral surfaces and the amount of sodium oleate adsorbed on mineral surfaces was measured by UV-Visible Spectrophotometer (UV-Vis). The results show that magnesite and dolomite have a great difference in flotation performance when the pulp temperature is 15 ℃ and the effective separation of magnesite from dolomite can be achieved. The main reason is that after the pulp is stirred at a pulp temperature of 15 ℃ and the pH of the pulp is adjusted with HCl and NaOH, the amount of metal ions remaining on the surface of the magnesite is much larger than that on the surface of the dolomite. Therefore, the active targets (metal ion) adsorbing oleate ions on the surface of the magnesite are more than that on the dolomite. When magnesite and dolomite coexist, oleic acid ion mainly acts on the surface of magnesite at the optimum temperature, which makes magnesite float up and the separation of magnesite from dolomite could be achieved.
In this study, the effects of copper ions (Cu2+) on the sulfidization (Na2S) flotation of malachite was investigated using micro-flotation experiments, zeta-potential measurements, X-ray photoelectron spectroscopy (XPS) analysis, adsorption experiments, and Materials Studio simulation. The results indicated that the flotation recovery of malachite decreased after the pretreatment of the mineral particles with Cu2+ ions prior to the addition of Na2S. The results for zeta-potential measurements and XPS analysis revealed that less sulfide ion species in the pulp solution transferred onto the mineral surface, the sulfidization of malachite surface weakened. The adsorption amount of collector on the mineral surface decreased, and this finding was confirmed by the results of the zeta-potential and adsorption experiments. Materials Studio simulation revealed that the adsorption energy of HS- ions and C4H9OCSS- ions on malachite surface increased after the adding of Cu2+ ion. The competitive adsorption made Cu2+ ions depress sulfidization flotation of malachite, the dissolution of mineral surface affected the adsorption of reagents on it, and decreased the floatability of malachite.
Traditional magnesite desilication flotation collectors struggle to efficiently remove quartz from low-grade magnesite, prompting the exploration of new, highly selective flotation collectors. Addressing this need has become a focal point in mineral processing research. This study introduced heptadecylamine ethylimidazoline quaternary ammonium salt (ODD) as a quartz flotation collector for separating quartz from magnesite. Flotation experiments involving single minerals and artificially mixed minerals demonstrated that magnesite and quartz could be effectively separated under specific conditions: an ODD concentration of 40mg/L and pH=7.0. Zeta potential assessments revealed that the adsorption of ODD increased the potential of quartz by 4.4 times compared to magnesite. Furthermore, contact angle measurements illustrated that ODD selectively increased the hydrophobicity of the quartz surface while not affecting the contact angle of magnesite. X-ray photoelectron spectroscopy (XPS) analysis indicated that ODD's selective adsorption at the quartz surface through interaction with the O sites on quartz rather than magnesite. Drawing from these findings, a flotation separation model from magnesite and quartz under the influence of ODD was formulated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.