Himalayan glaciers are retreating, and glacial lakes are evolving and proliferating as a result of climate change. Glacier retreat marks in the formation and expansion, and sometimes outburst of moraine-dammed lakes. Lato Lake is one of the high-altitude and unexplored glacial lakes upstream of Gya-Miru village in the Leh-Ladakh region. This study is the first of its kind to assess hydrogeochemistry (HCO3−, SO4 2−, NO3 −, Cl−, F−, Ca2+, Mg2+, Na+, and K+) and studying the dynamics of a moraine-dammed lake in the Ladakh Himalayas. We observed substantial expansion of Lato Lake over the past 50 years between 1969 and 2019, and the areas of the lake have increased while the glacier area is reduced by 16.4% and 4.15%, respectively. The pH values ranging from 7.6 to 8.1 show slightly alkaline. HCO3 −, Ca2+, and SO4 2− were the most dominant ions during the study period 2018–19. The high (Ca2+ + Mg2+) and a low (Na+ + K+) ratio to the total cations show that Lato Lake receives ions from rock weathering, primarily from carbonate rocks. Gibbs and Na-Mixing plot also support the hydrogeochemistry of lake water was primarily controlled by rock weathering. HYSPILT backward trajectory model suggested that atmospheric input mainly originated from the seawater vapor transported by the summer monsoonal and westerly circulation systems. Results show that the lake has a substantial impact on the long-range transport of ocean water relative to local interferences.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.