Purpose: The choice of preventive measures and labour protection equipment should be justified taking into account the occupational risk. For objective reasons, existing approaches do not provide an opportunity to justify the choice of the necessary measures, which best reduce the occupational risk level. Consequently, an effective methodological approach to justify preventive measures is required, since the level of risk in mining enterprises is still high, especially in developing countries and countries with weak economies. The current research is devoted to solving this urgent scientific problem. Design/methodology/approach: Construction of mathematical models based on accumulated statistical data on the values of production factors using polynomial regression, which is justified by the simplicity of computational algorithms and the clarity of the results obtained. Findings: On the example of the Ukrainian mining industry, it was found that to reduce occupational risk; the most effective is to change the operating mode of the equipment and rational planning of working hours, but not measures to reduce the dust concentration. Research limitations/implications: The study is focused on the mining industry; a methodological approach and a mathematical model are proposed for specific working conditions at Ukrainian mining industry. Practical implications: The proposed approach makes it possible, based on statistical data, to quickly and reliably select the most effective measures to reduce the industrial risk level. Originality/value: A feature of the proposed approach to reducing industrial risk is a comprehensive accounting of data on factors affecting occupational risk, the construction of mathematical models and the use of modelling results when planning measures to improve working conditions.
Purpose: The conducted research was aimed at constructing a structural and functional model for the interaction of bodies providing aviation safety during crisis management. Design/methodology/approach: The methods of mathematical simulation and the graph theory, the methods comparison and formalization have been applied to study the process of interaction between the bodies assuring aviation safety. Using methods of the linear algebra allowed constructing a mathematical model for the functional structure of the interaction process that contains description of this process by the main methods of interaction. Findings: It has been proved that the interaction process has a certain functional properties that reflect the functional relations between the modes of violator actions, the modes of using the response forces and the modes of interaction. A structural and functional model of interaction in semantic, algebraic forms and in the form of graphs has been created. using typical operations with incidence matrices, the possibility of obtaining the physical interpretation of the simulation results within the introduced algebra of functional structure models has been justified. Research limitations/implications: Discusses interactions between the bodies that assure aviation safety and at the same time, the possibility of a crisis situation is taken into account. Practical implications: The developed models allow reflecting the current state of the functional system and the elements of the process of interaction rather completely. It makes a structural and functional analysis of interaction possible and allows defining the priority directions of its organization, simulating the options and methods of interaction in solving relevant tasks by the bodies that assure aviation safety. Originality/value: That allowed not only describing the formal relations between the methods of interaction and interacting units, between the interacting units and the modes of violator actions, but also considering the influence of the interaction process on the current state of the functional system.
Purpose: This investigation aims to study the various approaches currently used to reduce the load on computer servers in order to better manage data on hospital wastewater treatment and solid waste generation. Design/methodology/approach: This manuscript investigates the taxonomies of deduplication procedures based on literature and other data sources, thereby presenting its classification and its challenges in detection. Findings: Based on the literature survey of deduplication techniques, the method of deduplication dispensed on cloud gadget devices has been found to be a promising research challenge. The gaps discussed include a reduction in storage space, bandwidth, type of disks used, and expenditure on energy usage and heat emissions when implementing these strategies. The art work on a scalable, robust, green and allocated approach to deduplication for a cloud gadget will remain of interest in destiny. Research limitations/implications: Considerable attention is focused on the deduplication due to efficient, extensive storage system. Practical implications: This research paper will be useful to identify deduplication techniques which are nowadays used in different hospital wastewater data collection systems and put significant proposals for further improvements in deduplication. Originality/value: This manuscript portrays a broader assessment of the available literature for data duplication along with the classification of different methods for the data storage used in the different level of storage of hospital wastewater data collection.
Purpose: To evaluate the superpave design performance using Epolene (EE-2) as modifier, since SUPERPAVE design is a modified and sophisticated aspect as compared to previous mix design for asphalt mixtures. This is primarily due to the fact that superpave design mix also takes into consideration properties of materials beside asphalt. Design/methodology/approach: This study was conducted using Epolene (EE-2) as modifier in order to evaluate the performance of SUPERPAVE suitability for construction of roads in Alfaraa campus (King Khalid University) Abha, in Asir Province of Saudi Arabia. Glow number test, dynamic modulus test and indirect tensile strength test were conducted to evaluate the performance of EE-2 modifier against the control mixture. Findings: The mixture modified with EE-2 gave better performance in terms of temperature-based performance and resistance to moisture damage. Also, larger values of E*/sinφ were obtained for EE-2 modified mixture at various loading frequencies and temperature in comparison to control mixture. Research limitations/implications: The Epolene modifier successfully enhances and improves the SUPERPAVE mixture performance. Further studies are required to evaluate the performance of EE-2 modifier at much lower temperature ranges. Practical implications: The results of the study allow us to recommend the investigated asphalt mixture for applied for the construction of roads in the Alfaraa (new campus of King Khalid University), Abha, Asir province, Saudi Arabia. Originality/value: A modified asphalt mixture has been proposed that has better performance at higher and lower temperatures. The developed asphalt mixture is more resistant to moisture damage than the compared to control mixture.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.