The present study deals with nickel ions removal from dilute aqueous solution by ion flotation with emphasizing the process efficiency. The effect of collector structure on ion flotation efficiency and water recovery was evaluated using anionic collectors of sodium dodecyl sulfate (SDS) and functionalized graphene oxide by 2,6-diaminopyridine (AFGO). The results showed that process efficiency enhanced with the increase in pH and reached to complete removal at pH of 9 and 9.7 for SDS and AFGO, respectively. The AFGO showed the multifunctional bindings for complex formations with nickel ions. A coordinate bond may be formed between nickel ions and AFGO at the pH of 9 which increased nickel ion removal. The water recovery as a critical parameter that contributes to removal efficiency was significantly affected by the collector structure. The AFGO doesn’t have a frothing property and so decreases the water recovery during the process. The AFGO had significantly lower water recovery than SDS (almost threefold).
The present paper introduces the key advantages of ImhoflotTM, JamesonTM, and RefluxTM flotation cells over the conventionally used mechanical and column cells from different perspectives. The impact of slurry mean retention time, bubble size distribution, and energy input was studied for all cell types. The mean retention time of laboratory scale ImhoflotTM (V030-cell) and RefluxTM flotation cells (RFC100) were measured experimentally using KCl as a tracer. Also, initially a statistical and practical overview of previously installed ImhoflotTM, and JamesonTM cells was presented in this work. It was found that more industrial data is available for the JamesonTM cell. The diagnostic results showed that RefluxTM, JamesonTM, and ImhoflotTM functionally operate similarly based on providing intensive turbulence in the downcomer. They were initially applied to the Australian and the UK coal industries and installed in the cleaning stage of flotation circuits, while there are now more applications in a wide variety of minerals across the world in different flotation stages. First pilot trials on a Russian gold ore were reported operating both JamesonTM and ImhoflotTM cells at the rougher-scalper and cleaner stages providing superior results using the ImhoflotTM cell as rougher-scalper and the JamesonTM at the cleaner. Formation of sub-micron and micron-sized bubbles, effective hydrodynamic characteristics, and low capital and operating costs were reported as major advantages of intensified flotation cells over the conventionally used ones in improving the recoverability of ultra-fine particles. Literature data showed that these cells provide greater gas-hold-up values (40-60%) over the mechanical (5-20%) and column cells (5-25%) with substantially lower power inputs. It was indicated that low mean slurry retention time could lead to a potential enhancement in their throughputs, but further industrial measurements are required to prove this statement. The RefluxTM cell showed a plug-flow mixing regime, while ImhoflotTM V-Cell followed the trend of perfect mixing and plug-flow dispersion regimes.
In this research, the effect of different sources of process water on the flotation efficiency of copper sulfide ore prepared from the Sarcheshmeh copper mine was investigated. For this purpose, samples of fresh water to the plant, overflows of copper-molybdenum concentrate thickener, copper concentrate thickener, and recycled water pool as well as a mixture of fresh water and recycled water were prepared and characterized. Flotation tests were performed under the same conditions as the plant’s rougher circuit and were kept constant during all experiments. Grade and recovery of copper, iron, molybdenum, and silica were selected as the metallurgical response of flotation tests. The results were subjected to statistical analysis to assess the relative significance of which water source affects the flotation performance as evaluated from the experimental results. The results showed that the copper concentrate thickener overflow had the greatest effect on the flotation efficiency, so the grade and recovery decreased by about 10% and 75% for copper, and 10% and 6% for iron in the concentrate, respectively, while the grade and recovery increased up to 0.1% and 12% for silica, and 3% and 25% for molybdenum, respectively. The reason for this effect was attributed to the high content of suspended solid particles, and Cu2+, Mo2+, and Fe2+ cations in this water source that increased the coating effect over gangue minerals and entrainment rate. The improvement of molybdenum flotation was also ascribed to the possible presence of residual diesel oil from the flotation process in the plant. Due to the relatively equal amount in all sources of process water, the effect of anions and ions of dissolved salts was difficult.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.