Constantly rising demands on extremely stressed lightweight structures, particularly in traffic engineering as well as in machine building and plant engineering, increasingly require the use of endless fibre-reinforced composite materials which, due to their selectively adaptable characteristics profiles, are clearly superior to conventional monolithic materials. Especially composites with textile reinforcement offer the highest flexibility for the adaptation of the reinforcing structure with regard to complex loading conditions. The load-adapted combination of three-dimensional reinforced semi-finished fibre products (textile preforms) made from carbon fibres (CF) with aluminium light metal alloys (Al) offers a considerable lightweight construction potential, which up to now has not been exploited. The textile CF reinforcements embedded in the light metal matrix offers improved properties of these metal matrix composites (MMC), thus causing better creep resistance, especially at high operating temperatures, and good energy absorption behaviour, as well as increased stiffness and strength. In addition, loadadapted CF/Al-MMC, due to the relatively high stiffness and strength of the metal matrix, allow the introduction of extremely high forces, thereby enabling a much better exploitation of the existing lightweight construction potential of this material in comparison to other composite materials. These studies show that the gas pressure infiltration technique was successfully used to prepare composites consisting of unidirectional as well as bidirectional Ni-coated carbon fibres in different Al-alloy matrix systems and using of graphite moulds. Most of these investigations aim at the use of high tensile strength (HTS) fibres despite high reactivity with Al.
PL
Stale rosnące wymagania w stosunku do ekstremalnie obciążonych konstrukcji lekkich, szczególnie w zakresie inżynierii ruchu drogowego, a także w budowie maszyn i urządzeń, w coraz większym stopniu wymagają stosowania materiałów kompozytowych wzmocnionych włóknami ciągłymi, które z powodu ich dopasowanych właściwości posiadają wyraźnie większe możliwości od tradycyjnych monolitycznych materiałów. Zwłaszcza kompozyty włókniste oferują największe możliwości dostosowania struktury wzmocnienia do złożonych warunków obciążenia. Odpowiednio dopasowane połączenie trójwymiarowo wzmocnionych półfabrykatów w postaci preform wykonanych z włókien węglowych (CF) z metalami lekkich stopów aluminium (Al) oferuje ogromny potencjał konstrukcji lekkich, który do tej pory nie został wykorzystany. Wzmocnienie węglowe w osnowie metali lekkich oferuje lepsze właściwości otrzymanych materiałów kompozytowych (MMC) z lepszą odpornością na pełzanie, szczególnie w wysokich temperaturach pracy, dobrą absorpcją energii, a także poprawę sztywności i wytrzymałości. Ponadto odpowiednio dostosowany do obciążenia CF/Al-MMC, ze względu na stosunkowo dużą sztywność i wytrzymałość osnowy metalowej, umożliwia przeniesienie dużych obciążeń, co pozwala na jeszcze lepsze wykorzystanie istniejącego potencjału tego materiału w porównaniu do innych materiałów kompozytowych. Przedstawione badania pokazują, że metoda infiltracji gazowej (GPI) została z powodzeniem wykorzystywana do wytwarzania kompozytów metalowych wzmocnionych jedno- i dwukierunkowo włóknami z powłoką Ni z różnymi stopami Al. z wykorzystaniem form grafitowych. W większości z tych badań użyto włókien o wysokiej wytrzymałości na rozciąganie (HTS) pomimo dużej reaktywności z Al.