This paper addresses fault-tolerant control for position mooring of a shuttle or floating production storage and offloading vessels. A complete framework for fault diagnosis is presented. A loss of a sub-sea mooring line buoyancy element and line breakage are given particular attention, since such failures might cause high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing is designed using dedicated change detection for the type of distribution encountered. A new position recovery algorithm is proposed as a means of fault accommodation in order to keep the mooring system in a safe state, despite faults. The position control is shown to be capable of accommodating serious failures and preventing breakage of a mooring line, or a loss of a buoyancy element, from causing subsequent failures. Properties of the detection and fault-tolerant control algorithms are demonstrated by high fidelity simulations.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A water for injection system supplies chilled sterile water as a solvent for pharmaceutical products. There are ultimate requirements for the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause a loss of one or more batches of the production. Early diagnosis of faults is hence of considerable interest for this process. This study investigates the properties of multiple matchings with respect to isolability, and it suggests to explore the topologies of multiple use-modes for the process and to employ active techniques for fault isolation to enhance structural isolability of faults. The suggested methods are validated on a high-fidelity simulation of the process.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.