We study the heat diffusion in a domain with an obstacle inside. More precisely, we are interested in the quantity of heat in so far as a function of the position of the heat source at time 0. This quantity is also equal to the expectation of the sojourn time of the Brownian motion, reflected on the boundary of a small disk contained in the unit disk, and killed on the unit circle. We give the explicit expression of this expectation. This allows us to make some numerical estimates and thus to illustrate the behaviour of this expectation as a function of starting point of the Brownian motion.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The form of topological derivatives for an integral shape functional is derived for a class of semilinear elliptic equations. The convergence of finite element approximation for the topological derivatives is shown and the error estimates in the L [...] norm are obtained. The results of numerical experiments which confirm the theoretical convergence rate are presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.