Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The Analytic Rank of a Family of Jacobians of Fermat Curves
100%
|
|
nr 3
199-206
EN
We study the family of curves $F_{m}(p): x^{p} + y^{p} = m$, where p is an odd prime and m is a pth power free integer. We prove some results about the distribution of root numbers of the L-functions of the hyperelliptic curves associated to the curves $F_{m}(p)$. As a corollary we conclude that the jacobians of the curves $F_{m}(5)$ with even analytic rank and those with odd analytic rank are equally distributed.
2
Content available remote A note on the torsion of the Jacobians of superelliptic curves $y^{q} = x^{p} + a$
100%
EN
This article is a short version of the paper published in J. Number Theory 145 (2014) but we add new results and a brief discussion about the Torsion Conjecture. Consider the family of superelliptic curves (over ℚ) $C_{q,p,a}: y^{q} = x^{p} + a$, and its Jacobians $J_{q,p,a}$, where 2 < q < p are primes. We give the full (resp. partial) characterization of the torsion part of $J_{3,5,a}(ℚ)$ (resp. $J_{q,p,a}(ℚ)$). The main tools are computations of the zeta function of $C_{3,5,a}$ (resp. $C_{q,p,a}$) over $𝔽_{l}$ for primes l ≡ 1,2,4,8,11 (mod 15) (resp. for primes l ≡ -1 (mod qp)) and applications of the Chebotarev Density Theorem.
3
Content available remote Congruent numbers over real number fields
100%
|
|
nr 2
179-186
EN
It is classical that a natural number n is congruent iff the rank of ℚ -points on Eₙ: y² = x³-n²x is positive. In this paper, following Tada (2001), we consider generalised congruent numbers. We extend the above classical criterion to several infinite families of real number fields.
5
Content available remote Cubic forms, powers of primes and the Kraus method
51%
EN
We consider the Diophantine equation $(x+y)(x²+Bxy+y²) = Dz^{p}$, where B, D are integers (B ≠ ±2, D ≠ 0) and p is a prime >5. We give Kraus type criteria of nonsolvability for this equation (explicitly, for many B and D) in terms of Galois representations and modular forms. We apply these criteria to numerous equations (with B = 0, 1, 3, 4, 5, 6, specific D's, and p ∈ (10,10⁶)). In the last section we discuss reductions of the above Diophantine equations to those of signature (p,p,2).
6
Content available remote Tuples of hyperelliptic curves y² = xⁿ+a
51%
|
|
tom 150
|
nr 2
105-113
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.