Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Open-porous preforms from Al-Ti-C compounds were successfully ignited and synthesized by combustion synthesis in a microwave field. The reaction course and the temperature were remarkably affected by the preparation method and molarratio of the substrates, as well as the position of the green sample in the microwave field generated by a single mode microwave reactor. The manufactured structures were characterized by SEM investigations. The addition of aluminum powder to the mixture moderates the reaction and temperaturę variations, allowing the course of synthesis in explosive mode to be avoided. Among the reported developed materials the following can be distinguished: Ti-Al intermetallics, titanium carbides and MAX phases belonging to the Ti-Al-C system. The prepared and selected Al-Ti C preforms were subsequently infiltrated with an AlSi12 aluminum alloy by the squeeze casting method. The composite materials exhibit a relatively homogeneous microstructure with low residual porosity and a good reinforcement/matrix interface.
PL
Otwarte porowate preformy ze związków Al-Ti-C z powodzeniem zapalono i zsyntetyzowano poprzez syntezę spaleniową w polu mikrofalowym. Znaczący wpływ na przebieg i temperaturę reakcji miał sposób przygotowania i stosunek molowy sub-stratów oraz położenie próbki w polu mikrofalowym generowanym przez jednomodowy reaktor mikrofalowy. Wytworzone struktury scharakteryzowano za pomocą badań SEM. Dodatek proszku aluminium do mieszaniny łagodzi przebieg reakcji i zmiany temperatury, pozwalając uniknąć przebiegu syntezy w trybie wybuchowym. Spośród wytworzonych materiałów można wyróżnić następujące: fazy międzymetaliczne Ti-Al, węgliki tytanu i fazy typu MAX należące do układu Ti-Al-C. Przygotowane i wyselekcjonowane preformy Al-Ti-C następnie infiltrowano stopem aluminium AlSi12 metodą prasowania ze stanu ciekłego. Materiały kompozytowe wykazują stosunkowo jednorodną mikrostrukturę o niskiej porowatości resztkowej i dobrej granicy faz umocnienie/osnowa.
EN
A method for the open-cell aluminum foams manufacturing by investment casting was presented. Among mechanical properties, compressive behaviour was investigated. The thermal performance of the fabricated foams used as heat transfer enhancers in the heat accumulator based on phase change material (paraffin) was studied during charging-discharging working cycles in terms of temperature distribution. The influence of the foam on the thermal conductivity of the system was examined, revealing a two-fold increase in comparison to the pure PCM. The proposed castings were subjected to cyclic stresses during PCM’s subsequent contraction and expansion, while any casting defects present in the structure may deteriorate their durability. The manufactured heat transfers enhancers were found suitable for up to several dozen of cycles. The applied solution helped to facilitate the heat transfer resulting in more homogeneous temperature distribution and reduction of the charging period’s duration.
EN
The paper concerns pull-off strength results of epoxy coatings without and with five diffe- rent fillers. Polymer coatings were applied to a steel substrate that was degreased and/or pretreated by the means of abrasive blasting using electrocorundum and cast steel shot with different grain sizes. The roughness profile and the basic roughness parameters were determined. The results showed a decisive effect of substrate preparation on the coating adhesion.
4
Content available Investment Casting of AZ91 Magnesium Open-Cell Foams
80%
EN
The process of investment casting of AZ91 magnesium alloy open-cell porosity foams was analysed. A basic investment casting technique was modified to enable the manufacturing of magnesium foams of chosen porosities in a safe and effective way. Various casting parameters (mould temperature, metal pouring temperature, pressure during metal pouring and solidifying) were calculated and analysed to assure complete mould filling and to minimize surface reactions with mould material. The foams manufactured with this method have been tested for their mechanical strength and collapsing behaviour. The AZ91 foams acquired in this research turned out to have very high open porosity level (>80%) and performed with Young’s modulus of ~30 MPa on average. Their collapsing mechanism has turned out to be mostly brittle. Magnesium alloy foams of such morphology may find their application in fields requiring lightweight materials of high strength to density ratio or of high energy absorption properties, as well as in biomedical implants due to magnesium’s high biocompatibility and its mechanical properties similar to bone tissue.
EN
Microwave Assisted Self-propagating High-temperature Synthesis (MASHS) was used to prepare open-porous MAX phase preforms in Ti-Al-C and Ti-Si-C systems, which were further used as reinforcements for Al-Si matrix composite materials. The pretreatment of substrates was investigated to obtain open-porous cellular structures. Squeeze casting infiltration was chosen to be implemented as a method of composites manufacturing. Process parameters were adjusted in order to avoid oxidation during infiltration and to ensure the proper filling. Obtained materials were reproducible, well saturated and dense, without significant residual porosity or undesired interactions between the constituents. Based on this and the previous work of the authors, the reinforcement effect was characterized and compared for both systems. For the Al-Si+Ti-Al-C composite, an approx. 4-fold increase in hardness and instrumental Young's modulus was observed in relation to the matrix material. Compared to the matrix, Al-Si+Ti-Si-C composite improved more than 5-fold in hardness and almost 6-fold in Young's modulus. Wear resistance (established for different loads: 0.1, 0.2 and 0.5 MPa) for Al-Si+Ti-Al-C was two times higher than for the sole matrix, while for Al-Si+Ti-Si-C the improvement was up to 32%. Both composite materials exhibited approximately two times lower thermal expansion coefficients than the matrix, resulting in enhanced dimensional stability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.