Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł porusza temat wykorzystania kokpitów menedżerskich w obszarze śledzenia skuteczności kampanii e-marketingowych. Autorzy zarysowali rolę e-marketingu we współczesnej organizacji, zdefiniowali kokpit menedżerski i kluczowe wskaźniki wydajności w kontekście e-marketingu. W części praktycznej scharakteryzowano panele informacyjne Google Analytics i zaprezentowano studium przypadku kampanii reklamowej z ich wykorzystaniem.
EN
Article describes usage of performance dashboard for monitoring e-marketing campaign. Authors have outlined e-marketing role in modern organization, defined performance dashboard and key performance indicators in e-marketing context. In practical part of this article Google Analytics dashboards have been characterized and case study of its usage in e-marketing campaign have been presented.
EN
Nowadays, in positron emission tomography (PET) systems, a time of fl ight (TOF) information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten signifi cantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS) theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta.
EN
A positron emission tomography (PET) scan does not measure an image directly. Instead, a PET scan measures a sinogram at the boundary of the field-of-view that consists of measurements of the sums of all the counts along the lines connecting the two detectors. Because there is a multitude of detectors built in a typical PET structure, there are many possible detector pairs that pertain to the measurement. The problem is how to turn this measurement into an image (this is called imaging). Significant improvement in PET image quality was achieved with the introduction of iterative reconstruction techniques. This was realized approximately 20 years ago (with the advent of new powerful computing processors). However, three-dimensional imaging still remains a challenge. The purpose of the image reconstruction algorithm is to process this imperfect count data for a large number (many millions) of lines of response and millions of detected photons to produce an image showing the distribution of the labeled molecules in space.
EN
The polystyrene doped with 2,5-diphenyloxazole as a primary fluor and 2-(4-styrylphenyl)benzoxazole as a wavelength shifter prepared as a plastic scintillator was investigated using positronium probe in wide range of temperatures from 123 to 423 K. Three structural transitions at 260, 283, and 370 K were found in the material. In the o-Ps intensity dependence on temperature, the significant hysteresis is observed. Heated to 370 K, the material exhibits the o-Ps intensity variations in time.
8
Content available remote Computing support for advanced medical data analysis and imaging
20%
EN
We discuss computing issues for data analysis and image reconstruction of positron emission tomography based on time-of-flight medical scanner or other medical scanning devices producing large volumes of data. Service architecture based on grid and cloud concepts for distributed processing is proposed and critically discussed.
EN
The Jagiellonian Positron Emission Tomograph (J-PET) collaboration is developing a prototype time of flight (TOF)-positron emission tomograph (PET) detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measurements. The very fast fi eld programmable gate array (FPGA)-based front-end electronics and the data acquisition system, as well as low- and high-level reconstruction algorithms were specially developed to be used with the J-PET scanner. The TOF-PET data processing and reconstruction are time and resource demanding operations, especially in the case of a large acceptance detector that works in triggerless data acquisition mode. In this article, we discuss the parallel computing methods applied to optimize the data processing for the J-PET detector. We begin with general concepts of parallel computing and then we discuss several applications of those techniques in the J-PET data processing.
10
Content available remote List-mode reconstruction in 2D strip PET
17%
EN
Using a theory of list-mode maximum likelihood expectation-maximization (MLEM) algorithm, in this contribution, we present a derivation of the system response kernel for a novel positron emission tomography (PET) detector based on plastic scintillators.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.