Sedimentary structures discussed in the present study are genetically linked to ripples that consist of pure sand or alternating sand and mud layers. All types of ripple-related structures, such as climbing-ripple cross-lamination and heterolithic bedding, i.e., flaser, wavy and lenticular (nodular), have been identified for the first time in fluvial strata that have been characterised previously as commonly massive. These small-scale bedforms, produced by migrating ripples, have been documented in a fluvial channel of late Neogene age in central Poland. The abundance and co-occurrence of the structures discussed and their spatial distribution provide evidence of their formation under very low-energy conditions, when flow velocity changed markedly, but was often significantly less than 0.5 m/s. Therefore, these ripple-derived sedimentary structures are here recognised as typical of channel fills of an anastomosing river.
We expected that our paper on the crevasse-splay microdelta (Chomiak et al., 2019) would arouse the interest of other researchers for at least two reasons. First, this is the first such palaeoform discovered and described within the Mid-Miocene lignite seam in Poland. Second, the microdelta siliciclastic deposits are strongly deformed both ductile and brittle. Therefore, we would like to thank Tom van Loon for his effort to comment on our article, including his words of appreciation, and above all, for pointing out some of the terminological and interpretative shortcomings. Our reply will be in line with the issues discussed in his comment.
Many geological problems have not been convincingly explained so far and are debatable, for instance the origin and changes of the Neogene depositional environments in central Poland. Therefore, these changes have been reconstructed in terms of global to local tectonic and climatic fluctuations. The examined Neogene deposits are divided into a sub-lignite unit (Koźmin Formation), a lignite-bearing unit (Grey Clays Member), and a supra-lignite unit (Wielkopolska Member). The two lithostratigraphic members constitute the Poznań Formation. The results of facies analysis show that the Koźmin Formation was deposited by relatively high-gradient and well-drained braided rivers. Most likely, they encompassed widespread alluvial plains. In the case of the Grey Clays Member, the type of river in close proximity to which the mid-Miocene low-lying mires existed and then were transformed into the first Mid-Miocene Lignite Seam (MPLS-1), has not been resolved. The obtained results confirm the formation of the Wielkopolska Member by low-gradient, but mostly well-drained anastomosing or anastomosing-to-meandering rivers. The depositional evolution of the examined successions depended on tectonic and climatic changes that may be closely related to the mid-Miocene great tectonic remodelling of the Alpine-Carpathian orogen. This resulted in palaeogeographic changes in its foreland in the form of limiting the flow of wet air and water masses from the south and vertical tectonic movements.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.