Objective: The focus of this study is to model the cardiovascular system (CS) involving regional skin blood flow (SBF) to gain new insights into the skin-CS relationship. Methods: A lumped parameter model with a series of electrical components was developed to model the CS involving SBF. Four parts were considered: the heart, arterial circulation, microcirculation (including the skin and other tissues), and the venous system. The model was validated based on previous publications. Additionally, the body surface was divided into seven blocks replaced by lumped resistances in this model, including the head, upper limbs and neck, chest and back, anterolateral abdomen, posterior abdomen, lower limbs, and buttocks. The SBF of each block was described using a weighted average method (relative ratio of cutaneous blood perfusion and regional body surface area) Results: Cardiodynamics characterized the properties of cardiac cycles, including isovolumic contraction, accelerated ejection, decelerated ejection, isovolumic diastole, and filling phases. Blood flow and pulse pressure in the arterial trunk declined and increased, respectively, from the aorta root to the distal portion, exhibiting normal cardiovascular properties. Accordingly, the blood pressure of the arterial branches attached to the arterial trunk also satisfied normal physiological characteristics; the blood flow of all the arterial branches exhibited good agreement with previous studies. Additionally, the modeled SBF of each region was consistent with the data from the weighted average method. Conclusion: This model effectively demonstrates the normal properties of the CS that involves regional SBF and may be promising in the prediction of the skin-CS relationship.
Purpose: As the factors affecting the efficacy of the bare-metal stent in the treatment of aneurysm with a visceral vessel attached were not fully understood, we aimed to discuss the effects of different characteristics of the stent on the hemodynamics and flexibility in the treatment of the aneurysm. Methods: Single-layer (with different strut widths) and multi-layer (with a different number of struts) stent models divided into three porosity groups, with porosities of 72.3, 60.5, and 52.4%, were modeled for a comparison of their hemodynamic isolation and flexibility performance via computational fluid dynamics and finite element methods. Results: The velocity and timeaveraged wall shear stress decreased more noticeably with multi-layer stent interventions. A higher oscillatory shear index and relative residence time occurred at the aneurysmal sac wall after multi-layer stents were employed. Time-averaged wall shear stress on the aneurysmal wall decreased with an increase in the number of struts or a decrease in pore size, but oscillatory shear index and relative residence time increased as the number of struts increased or the pore size decreased. Besides, all stents affect the branch patency slightly. In the bending test, when the porosity exceeded 60.5%, multi-layer stents were more flexible. Conclusion: The number of struts or pore size of stent dominated the isolation in the management of the aneurysm and affected the flexibility significantly when the porosity was below 60.5%. These findings may contribute to the special design of the stent in the treatment of such types of aneurysms.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.