We say that a spanning eulerian subgraph F ⊂ G is a flower in a graph G if there is a vertex u ∈ V(G) (called the center of F) such that all vertices of G except u are of the degree exactly 2 in F. A graph G has the flower property if every vertex of G is a center of a flower. Kaneko conjectured that G has the flower property if and only if G is hamiltonian. In the present paper we prove this conjecture in several special classes of graphs, among others in squares and in a certain subclass of claw-free graphs.
For an integer k ≥ 1, we say that a (finite simple undirected) graph G is k-distance-locally disconnected, or simply k-locally disconnected if, for any x ∈ V (G), the set of vertices at distance at least 1 and at most k from x induces in G a disconnected graph. In this paper we study the asymptotic behavior of the number of edges of a k-locally disconnected graph on n vertices. For general graphs, we show that this number is Θ(n2) for any fixed value of k and, in the special case of regular graphs, we show that this asymptotic rate of growth cannot be achieved. For regular graphs, we give a general upper bound and we show its asymptotic sharpness for some values of k. We also discuss some connections with cages.
If G is a claw-free graph of sufficiently large order n, satisfying a degree condition σₖ > n + k² - 4k + 7 (where k is an arbitrary constant), then G has a 2-factor with at most k - 1 components. As a second main result, we present classes of graphs 𝓒₁,...,𝓒₈ such that every sufficiently large connected claw-free graph satisfying degree condition σ₆(k) > n + 19 (or, as a corollary, δ(G) > (n+19)/6) either belongs to $⋃ ⁸_{i=1} 𝓒_i$ or is traceable.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.