In this paper, we give a short overview of algorithms of generating primes to a DL systems. The algorithms are probabilistic and works in a polynomial time.
PL
W pracy przedstawiamy algorytmy, które generują liczby pierwsze do kryptosystemów opartych na logarytmach dyskretnych. Zaprezentowane algorytmy są probabilistyczne i działają w wielomianowym czasie.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Given a square-free integer Δ < 0, we present an algorithm constructing a pair of primes p and q such that q|p + 1 − t and 4p − t2, = Δf2, where |t| ≤ 2√p for some integers f, t. Together with a CM method presented in the paper, such primes p and q are used for a construction of an elliptic curve E over a finite field Fp such that the order of E is divisible by a large prime. It is shown that our algorithm works in polynomial time.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We present a method of generating primes r ≡ 1 (mod n), q and a Weil q-number π such that r divides Φn(q) and r divides |A(Fq)|, where A/Fq is an ordinary abelian variety defined over a finite Fq corresponding to π. Such primes can be used for implementing pairing-based cryptographic systems.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the paper we propose an algorithm for generating large primes p and q such that q divides p4+p3+p2+p+1 or p4-p3+p2-p+1, and p, q are key parameters for Giuliani-Gong’s Public Key System. We analyze the computational complexity of considered methods.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We present a general method of generating primes p and q such that q divides Φn(p), where n > 2 is a fixed number. In particular, we present the deterministic method of finding a primitive nth roots of unity modulo q. We estimate the computational complexity of our methods.
In this paper we propose an algorithm for computing large primes p and q such that q divides p6 + p5 + p4 + p3 + p2 + p + 1 or p6 - p5 + p4 - p3 + p2 - p + 1. Such primes are the key parameters for the cryptosystem based on the 7th order characteristic sequences.