Tree transducers are systems which transform trees into trees just as automata transform strings into strings. They produce transformations, i.e. sets consisting of pairs of trees where the first components are trees belonging to a first language and the second components belong to a second language. In this paper we consider hypersubstitutions, i.e. mappings which map operation symbols of the first language into terms of the second one and tree transformations defined by such hypersubstitutions. We prove that the set of all tree transformations which are defined by hypersubstitutions of a given type forms a monoid with respect to the composition of binary relations which is isomorphic to the monoid of all hypersubstitutions of this type. We characterize transitivity, reflexivity and symmetry of tree transformations by properties of the corresponding hypersubstitutions. The results will be applied to languages built up by individual variables and one operation symbol of arity n ≥ 2.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.