Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Solving many problems in mechanics, engineering, medicine and other (e.g., diffusion tensor magnetic resonance imaging or finite element modeling) requires the efficient solving of algebraic equations. In many cases, such systems are very complex with a large number of linear equations, which are symmetric positive-defined (SPD). This paper is focused on improving the computational efficiency of the solvers dedicated for the linear systems based on incomplete and noisy SPD matrices by using preconditioning technique – Incomplete Cholesky Factorization, and modern set of processor instructions – Advanced Vector Extension. Application of these techniques allows to fairly reduce the computational time, number of iterations of conventional algorithms and improve the speed of calculation.
EN
Supervised classification covers a number of data mining methods based on training data. These methods have been successfully applied to solve multi-criteria complex classification problems in many domains, including economical issues. In this paper we discuss features of some supervised classification methods based on decision trees and apply them to the direct marketing campaigns data of a Portuguese banking institution. We discuss and compare the following classification methods: decision trees, bagging, boosting, and random forests. A classification problem in our approach is defined in a scenario where a bank’s clients make decisions about the activation of their deposits. The obtained results are used for evaluating the effectiveness of the classification rules.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.