Density of tiger Panthera tigris and leopard Panthera pardus was estimated using photographic capture–recapture sampling in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, from November 2008 to February 2009. A total of 2,000 camera trap nights for 100 days yielded 19 tigers and 29 leopards within an intensive sampling area of 107 km2. Population size of tiger from closed population estimator model Mb Zippin was 19 tigers (SE = ±0.9) and for leopards Mh Jackknife estimated 53 (SE = ±11) individuals. Spatially explicit maximum likelihood and Bayesian model estimates were 8.31 (SE = ±2.73) and 8.9 (SE = ±2.56) per 100 km2 for tigers and 13.17 (SE = ±3.15) and 13.01 (SE = ±2.31) per 100 km2 for leopards, respectively. Tiger density for MMDM models ranged from 6.07 (SE = ±1.74) to 9.72 (SE = ±2.94) per 100 km2 and leopard density ranged from 13.41 (SE = ±2.67) to 28.91 (SE = ±7.22) per 100 km2. Spatially explicit models were more appropriate as they handle information at capture locations in a more specific manner than some generalizations assumed in the classical approach. Results revealed high density of tiger and leopard in Mudumalai which is unusual for other high density tiger areas. The tiger population in Mudumalai is a part of the largest population at present in India and a source for the surrounding Reserved Forest.
An understanding of species ecology is vital for effective conservation, particularly if the species forms an important constituent of the lesser mammal guild and regulates small mammal and bird populations. As the ecological role of the leopard cat (Prionailurus bengalensis) in the intricate eastern Himalayan habitats is not known, we assessed the site occupancy, detection probability and activity pattern of leopard cats in Khangchendzonga Biosphere Reserve, India, based on sign surveys and camera trapping. The estimated site occupancy was 0.352 ± 0.061 and detection probability was 0.143 ± 0.0484. Occupancy modelling indicated low elevation, high rodent abundance and tree cover as best predictors for the occupancy of leopard cat. Diet based on analysed scats revealed murids as the most dominant prey (89.2 %). Information based on photographic captures indicated that the leopard cat exhibited a nocturnal activity pattern (peak activity between 0200–0300 hours), which coincided with its principal prey (revealed through diet analysis), but mainly contradicted with other sympatric competitors, hence indicating a temporal partitioning of resources among them. Ecological niche factor analysis indicated that the leopard cat exhibits high global marginality (1.32) and low global tolerance (0.275). The habitat suitability map for leopard cats showed majority of the habitat as unsuitable (1,959.44 km2) and predicted only 164.54 km2 areas of lower temperate forests as moderate to highly suitable. As highly suitable habitats of the leopard cat are in close proximity to villages, conflict issues are a major threat and therefore need to be addressed in conservation program for this felid.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.