In the paper, the numerical method of solving the one-dimensional subdiffusion equation with the source term is presented. In the approach used, the key role is played by transforming of the partial differential equation into an equivalent integro-differential equation. As a result of the discretization of the integro-differential equation obtained an implicit numerical scheme which is the generalized Crank-Nicolson method. The implicit numerical schemes based on the finite difference method, such as the Carnk-Nicolson method or the Laasonen method, as a rule are unconditionally stable, which is their undoubted advantage. The discretization of the integro-differential equation is performed in two stages. First, the left-sided Riemann-Liouville integrals are approximated in such a way that the integrands are linear functions between successive grid nodes with respect to the time variable. This allows us to find the discrete values of the integral kernel of the left-sided Riemann-Liouville integral and assign them to the appropriate nodes. In the second step, second order derivative with respect to the spatial variable is approximated by the difference quotient. The obtained numerical scheme is verified on three examples for which closed analytical solutions are known.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.