Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Tematyka artykułu dotyczy rozpoznawania defektów podobciążeniowych przełączników zaczepów (PPZ) z wykorzystaniem uczenia nadzorowanego. PPZ to specjalistyczne urządzenie będące częścią transformatora elektroenergetycznego, które pozwala na skokową zmianę przekładni a tym samym napięcia na zaciskach tego transformatora. Jako metodę diagnostyczną zastosowano metodę emisji akustycznej (EA), której zaletą jest możliwość stosowania podczas normalnej pracy transformatora bez konieczności jego wyłączania. Sygnały EA pozyskane z badań laboratoryjnych, w których symulowano cztery rodzaje defektów - typowych uszkodzeń PPZ, poddano wstępnej analizie z wykorzystaniem filtrów cyfrowych i transformaty Hilberta, a następnie poddano procesowi klasyfikacji. W artykule zawarto przykładowe przebiegi czasowe sygnałów EA oraz wyniki wstępnych badań dotyczących klasyfikacji defektów PPZ z wykorzystaniem siedmiu metod wraz z oceną ich skuteczności.
EN
The subject of the article concerns recognition of defects of on load tap changers (OLTC) with the use of supervised learning. OLTC is a specialized device that is part of a power transformer, which allows for a step change of the gear and thus the voltage at the terminals of this transformer. The acoustic emission (AE) method was applied as diagnostic method. The advantage of this method lies in the possibility of its application during normal operation of the device without having to turn it off. EA signals were obtained from laboratory tests in which four types of defects - typical OLTC damages, were simulated. The gathered signals were pre-analyzed using digital filters and Hilbert transforms, and then subjected to the classification process. The article contains examples of EA signal waveforms and the results of preliminary research on the classification of OLTC defects with the use of seven methods together with an assessment of their effectiveness.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.