Mixture distributions arise naturally where a statistical population contains two or more subpopulations. Finite mixture distributions refer to composite distributions constructed by mixing a number K of component distributions. The first account of mixture data being analyzed was documented by Pearson in 1894. We consider the distribution of a mixture of two normal distributions and investigate the conditions for which the distribution is bimodal. This paper presents a procedure for answering the question of whether a mixture of two normal distributions which five known parameters µ1, µ2, σ1, σ2, p is unimodal or not. For finding the modes, a simple iterative procedure is given. This article presents the possibility of estimation of modes using biaverage.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.