Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Propagation of a short pulse through human breast tissues is studied by numerically solving the diffuse equation. Different numerical methods, such as Monte Carlo and finite difference time domain, have been used to study the short pulse laser propagation through biological tissues. In this paper, we use boundary integral method to study the laser pulse–tissue interaction. The diffuse equation is used to examine the propagation of laser into biological tissues, and boundary integral method is used to alter this equation to the integral form and the result is solved by using boundary element method. To verify the precision of a boundary element method code, we compared the obtained results with those obtained by finite difference time domain method. In addition, the effects of different optical parameters of breast tissues, i.e., reduced scattering and absorption coefficients, on time evolution of a diffusely reflected pulse are studied.
EN
Purpose: The operation of engineering structures may cause various type of damages like cracks, alterations. Such kind of defects can lead to change in vibration characteristics of cantilever beam. The superposition of frequency causes resonance leading to amplitude built up and failure of beam. The current research investigates the effect of crack dimensional parameters on vibrational characteristics of cantilever beam. Design/methodology/approach: The CAD design and FE simulation studies are conducted in ANSYS 20 simulation package. The natural frequencies, mode shapes and response surface plots are generated, and comparative studies are performed. The effect of crack dimensional parameters is then investigated using Taguchi Design of Experiments. The statistical method of central composite design (CCD) scheme in Response Surface Optimization is used to generated various design points based on variation of crack width and crack depth. Findings: The research findings have shown that crack depth or crack height have significant effect on magnitude of deformation and natural frequency. The deformation is minimum at 0.009 m crack height and reaches maximum value at 0.011 m crack height. Research limitations/implications: The crack induced in the cantilever beam needs to be repaired properly in order to avoid crack propagation due to resonance. The present study enabled to determine frequencies of external excitation which should be avoided. The limitation of current research is the type of crack studied which is transverse type. The effect of longitudinal cracks on vibration characteristics is not investigated. Practical implications: The study on mass participation factor has shown maximum value for torsional frequency which signifies that any external excitation along this direction should be avoided which could cause resonance and lead to amplitude build up. Originality/value: The beams are used in bridge girders and other civil structures which are continuously exposed to moist climate. The moisture present in the air causes corrosion which initiates crack. This crack propagates and alters the natural frequency of beam.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.