We define a countable antichain condition (ccc) property for partial orderings, weaker than precalibre-ℵ₁, and show that Martin's axiom restricted to the class of partial orderings that have the property does not imply Martin's axiom for σ-linked partial orderings. This yields a new solution to an old question of the first author about the relative strength of Martin's axiom for σ-centered partial orderings together with the assertion that every Aronszajn tree is special. We also answer a question of J. Steprāns and S. Watson (1988) by showing that, by a forcing that preserves cardinals, one can destroy the precalibre-ℵ₁ property of a partial ordering while preserving its ccc-ness.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study the preservation of the property of LR being a Solovay model under projective ccc forcing extensions. We compute the exact consistency strength of the generic absoluteness of LR under forcing with projective ccc partial orderings and, as an application, we build models in which Martin's Axiom holds for $Σ\limits_{∼}}^{1}_{n}$ partial orderings, but it fails for the $Σ\limits_{∼}^{1}_{n+1}$.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.