Motivated by applications in linear dynamical systems, the author studies q^n(f), where q is the operator f●(d/dx) and qn is its n-th iteration. q^n(f) is a polynomial F(f(0),f(1),...,f(n)) in the derivatives f(0)=f,...,f(n) of f with integer coefficients. Special attention is paid to determining the coefficients of F. The author presents algorithms for computing the coefficients and also shows that the sum of all coefficients of F equals n!. The paper ends with some remarks on the number of coefficients of F, which is related to the number-theoretic unrestricted partition function.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.